A. Additional implementation details

Image and Word Features. Following [1], we use a Faster R-CNN networks [10] with ResNet-101 [5] as a backbone to train on Visual Genome dataset [8], and we extract a 2048-dimensional feature vector for each object.

We use the Byte Pair Encoding (BPE) [12], which effectively incorporate sub-word information and is beneficial for dealing with out-of-vocabulary words. We employ learnable positional encoding and initialize token embedding from pretrained weights of GPT-2.

Architecture and Hyperparameters. We have 3 layers in the encoder and 12 layers in the decoder with 12 heads in each layer. The hidden size D in each layer is 768. We load the GPT-2 (small) pretrained weights, which has 117M parameters into the decoder. We use the learning rate of 1×10^{-4} under XE loss and 1×10^{-5} during the reinforcement learning. We train the models with the AdamW optimizer [9] and a batch size 25. The beam size is equal to 5. The threshold τ is tuned on the validation set for different training data.

Training Details. We train all the models in two steps. We first train the models with cross-entropy (XE) loss and then finetune them using reinforcement learning. The cross-entropy loss L_{XE} is the traditional autoregressive classification loss

$$L_{XE} = - \sum_{t=1}^{T} \log (p(w_{t} | w_{1:t-1}))$$

(1)

where $w_{1:T}$ represents the target ground truth sequence.

For reinforcement learning, we employ a variant of Self-Critical Sequence training [11]. Following [3], we sample L sentences, $\hat{w}^1_{1:T}, \ldots, \hat{w}^L_{1:T}$, with beam search and use the mean reward from the L sentences as the baseline b. The gradient is

$$\nabla_{\theta} L_{RL}(\theta) = - \frac{1}{k} \sum_{i=1}^{L} \left(r(\hat{w}^i_{1:T}) - b \right) \nabla_{\theta} \log p(\hat{w}^i_{1:T})$$

(2)

where $r(\cdot)$ represents the CIDEr-D reward.

<table>
<thead>
<tr>
<th>Models</th>
<th>B-1</th>
<th>B-2</th>
<th>B-3</th>
<th>B-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Translation</td>
<td>26.5</td>
<td>11.6</td>
<td>4.5</td>
<td>1.9</td>
</tr>
<tr>
<td>ElJundi et al.</td>
<td>33.2</td>
<td>19.3</td>
<td>10.5</td>
<td>5.7</td>
</tr>
<tr>
<td>VisualGPT</td>
<td>52.6</td>
<td>28.5</td>
<td>20.8</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Table 1. Arabic Image Captioning. Direct translation is to directly translate from English caption to Arabic captions.

B. Image Captioning in Low-resource languages Evaluation

Image captioning in low-resource languages suffers from having sufficient image-pairs to train a good-quality model. Currently, there are only very few major languages such as English or Chinese are well studied in image captioning domains, but a lot of low-resource languages have not been covered. Developing good multi-modal technologies for those low-resource languages opens considerable economic perspective and benefit a huge number of inhabitants in the world.

In this work, we attempt to evaluate our model on Arabic image captioning challenges, which is much less covered in the literature compared to English. There are very few good-quality image-caption pairs since it is very expensive to acquire the annotations. Some optional solutions are translating English captions to Arabic languages, but it requires to have a good language translation system and the translated captions need to maintain good grounding ability with the image contents, which is challenging to modern translation systems especially for those low-resource languages. We further evaluate our model on ElJundi et al.’s Arabic image captioning dataset [4] which is built based on Flickr8K [6] and contains 8K images. We follow their evaluation setting and train our VisualGPT on it. To adapt our VisualGPT on Arabic vocabulary, we instead use the pre-trained GPT-2 in Arabic version [2].

The experimental results in Table 1. It shows that our VisualGPT can easily outperform the baseline models.
C. Train VisualGPT with more COCO and Conceptual Caption Datasets

Figure 1 shows other results obtained by training networks on the 5%, 10%, 20%, 50% and 100% (82,783 images) MS COCO data. Figure 2 shows the performance with the data scaling up to 2.5% (82,958 images) Conceptual Captions, in which the dataset scale is similar to the whole COCO data. For MS COCO, VisualGPT outperforms other baseline models when we sample $\leq 20\%$ training data. For Conceptual Caption, VisualGPT consistently outperforms all the baselines when we sample $\leq 2.5\%$ training images. The whole experiments highlight our model’s effectiveness on low data regimes.

On the other hand, we should also notice that M^2 Transformer surpasses the VisualGPT’s performance when there are 50% and 100% COCO training data. But when we train with the same number of Conceptual images, VisualGPT continuously outperforms all the baselines. This leads us to think of the reason why VisualGPT show different performing behaviors on these two datasets. The difference between these two datasets is that the Conceptual Captions contain more diverse vocabularies and image contents. In contrast, COCO captions only cover 80 common image objects. Therefore, the appearance frequency for each word in COCO is much higher than that in Conceptual Captions and COCO vocabulary diversity is also much lower than Conceptual Caption. We hypothesize the reason for this performance difference is that when the captions have a small coverage of each word, the caption generation will be benefited a lot from the GPT inherent knowledge and GPT can help the model quickly adapt into the new domain. But when there is a lot of in-domain data, the current image-captioning models can already generalize well on it and it potentially contradicts to the GPT original knowledge.

D. Attention over Different types of words

We use the Spacy parser to detect the part-of-speech of words in captions and calculate the mean value of the visual attention score. The result is presented in Fig. 3. We found PoS that tend to visual content, like noun (0.71), verb (0.71) and adjective (0.72), have high visual attention scores, whereas linguistic PoS like pronoun (0.53), punctuation (0.58), and determiner (0.61) receive low attention.

E. More Qualitative Examples

In Figure 4, we provide more examples of visual attentions. Blue indicates high visual scores and red indicates low visual scores. We can observe that VisualGPT assigns higher scores to words like “steam engine”, “elephants”, “horse”, “lush” and “cabinets”, and it assigns low visual scores to determiners and prepositions like “to” and “at”.

We also show some examples of generated captions by our VisualGPT and several strong baseline models including Transformer (3 layers) [13], M^2 Transformer (3 layers) [3] and AoA Transformer [7] in the Table 2, Table 3 and Table 4. Overall, we can observe that our VisualGPT is able to describe the image content more accurately than the baseline models.
<table>
<thead>
<tr>
<th>Image</th>
<th>Generated Captions</th>
<th>Ground Truth</th>
</tr>
</thead>
</table>
| ![Image](image1.png) | **Transformer**: a woman riding skis on skis
M² Transformer: a couple of skiers are standing near the snow
AoA Transformer: a man with skis in the snow
VisualGPT (ours): a group of people walk on a snowy mountain | GT1: the people are walking through snow in a wooded area
GT2: two people wearing skis traveling through the snow
GT3: a man is walking down a path covered in snow
GT4: a couple is skiing through the snowy woods
GT5: a couple of people that are in a snowy field |
| ![Image](image2.png) | **Transformer**: a street that has some street in it
M² Transformer: a traffic light over a street light under a traffic light
AoA Transformer: a street with people on a city street
VisualGPT (ours): a street with tall signs and traffic signs | GT1: a yellow traffic light above a street next to houses
GT2: a street scene of an intersection with a street light
GT3: a stop light hanging over an intersection in a residential area
GT4: a traffic signal at an intersection is suspended on wire
GT5: a street intersection with a traffic light over it |
| ![Image](image3.png) | **Transformer**: some pizza are sitting on a plate
M² Transformer: a plate with food and a knife on it
AoA Transformer: a plate of pizza on a table
VisualGPT (ours): a plate of bread are served on a table | GT1: a batch of bread slices sitting on a plate
GT2: a plate with some pieces of bread on it
GT3: sliced french bread is on a plate that is lying on a table
GT4: bread that is sitting on a plate that is on a table
GT5: a white plate with lots topped with garlic bread |
| ![Image](image4.png) | **Transformer**: two tennis player playing tennis on the ball
M² Transformer: a tennis player about to hit a ball
AoA Transformer: a baseball players on a game playing a game
VisualGPT (ours): a tennis player hits a ball with a racket | GT1: a man holding a racquet on top of a tennis court
GT2: a man with a tennis racket reaches for a ball
GT3: a man with a tennis racket is running on a court
GT4: a young man is playing a game of tennis
GT5: a tennis player in a blue shirt runs toward a ball |
| ![Image](image5.png) | **Transformer**: a group of birds that are standing in the grass
M² Transformer: a flock of birds perched in a tree branch
AoA Transformer: several giraffe are standing next to each trees
VisualGPT (ours): a bird standing in the middle of a pond | GT1: a bird is perched a top a branch over a river
GT2: a bird sits on a branch above a stream
GT3: a bird on top of a tree branch over water
GT4: a picture of an outside region that appears incredible
GT5: a bird on a fallen branch in a body of water |

Table 2. Caption generated by our VisualGPT, Transformer, M² Transformer and AoA Transformer on 0.1% MS COCO data split.
<table>
<thead>
<tr>
<th>Image</th>
<th>Generated Captions</th>
<th>Ground Truth</th>
</tr>
</thead>
</table>
| ![Boats](image1) | **Transformer**: several boats are sitting in the middle of a lake
\mathcal{M}^2 Transformer: a boat filled with boats floating in the water
AoA Transformer: an empty boat that has water and water
VisualGPT (ours): a canal filled with boats in the water | **GT1**: a blue boat docked on a green lush shore
GT2: a small marina with boats docked there
GT3: a group of boats sitting together with no one around
GT4: some boats parked in the water at a dock
GT5: boats sitting around the side of a lake by a tree |
| ![Pizza](image2) | **Transformer**: pizza slices and pizza in a plate covered pizza
\mathcal{M}^2 Transformer: people sitting at a table eating pizza and other salad
AoA Transformer: two pizza eating a table with pizza on the table
VisualGPT (ours): a group of pizza on an iron plate with toppings | **GT1**: a set of five pizzas sitting next to each other each with different toppings
GT2: a handful of prepared pizzas sit next to each other
GT3: five uncooked pizzas with a variety of different toppings
GT4: five unbaked pizzas that include various types of cheeses
GT5: five different pizzas are being prepared over a metal tray |
| ![Dogs](image3) | **Transformer**: a dog holding a frisbee in the water
\mathcal{M}^2 Transformer: a dog holding a frisbee in a body of water
AoA Transformer: a dog walking during a frisbee in a stone day
VisualGPT (ours): a dog walking through the water with a frisbee | **GT1**: two dogs are playing on the beach catching a frisbee
GT2: of two dogs only one may be the victor
GT3: a dog catching a frisbee by another dog on a beach
GT4: dog jumping up in the air to catch a frisbee in the summer time
GT5: a dog jumping up into the air to catch a frisbee |
| ![People](image4) | **Transformer**: a group of people taking a child in a in a building
\mathcal{M}^2 Transformer: a group of people in an airport with their hands
AoA Transformer: a picture of a young group of people standing for men
VisualGPT (ours): a group of people standing around a tv | **GT1**: a group of men standing around a room
GT2: some people are waiting in a long room
GT3: people are standing in a room looking at a television screen
GT4: a person sitting on a bench while the rest look somewhere else
GT5: a man in red winter clothes sits on a bench with people behind him gather in front of a tv |
| ![Elephants](image5) | **Transformer**: an elephant eating a elephant has a elephant
\mathcal{M}^2 Transformer: elephant with its trunk with their elephant with its trunk
AoA Transformer: two elephants standing at a lot of trees
VisualGPT (ours): three elephants standing next to some trees | **GT1**: two adult elephants are surrounding a baby elephant
GT2: a baby elephant kneeling in front of two bigger elephants
GT3: a baby elephant and it’s parents eat fruit
GT4: elephants eat fruit a baby elephant rummaging in the food
GT5: a pair of adult elephants with a baby elephant eat from a pile of fruit |

Table 3. Caption generated by our VisualGPT, Transformer, \mathcal{M}^2 Transformer and AoA Transformer on 0.5% MS COCO data split
<table>
<thead>
<tr>
<th>Image</th>
<th>Generated Captions</th>
<th>Ground Truth</th>
</tr>
</thead>
</table>
| ![Image](image1.png) | **Transformer**: a man in a suit and a woman standing in a shop
M^2 Transformer: a man is standing in a shop with a people holding people
AoA Transformer: a man is working on a bus in a
VisualGPT (ours): a group of people standing at an airport with their luggage | **GT1**: several people are purchasing tickets at a bus station
GT2: some people are checking in at the ticket counter somewhere in Asia
GT3: people waiting in line with luggage at a ticket counter
GT4: people are standing near an airport ticket kiosk
GT5: customers stand at a kiosk waiting for tickets |
| ![Image](image2.png) | **Transformer**: a bus that is parked in front of a building
M^2 Transformer: a couple of people walking down the side of a street
AoA Transformer: a bus is parked in a city street
VisualGPT (ours): a while and blue bus is parked on the side of a city street | **GT1**: people standing outside of a blue and white bus
GT2: an image of a tour bus that is picking people up
GT3: several people standing around buses and most wearing orange vests
GT4: a public transit bus pulling up to pick up passengers
GT5: a city bus at a stop waiting to pick up passengers |
| ![Image](image3.png) | **Transformer**: a blue and white airplane flying through a sky
M^2 Transformer: an airplane flying in the air
AoA Transformer: a plane airplane flying down in the sky
VisualGPT (ours): a plane is flying in the air over the trees | **GT1**: there’s an airplane in the sky flying over some trees
GT2: a large plane is flying over a crowd of trees
GT3: a aeroplane soaring high in the sky above the trees
GT4: a passenger plane flies in the sky over a forest
GT5: an airplane is seen flying over several trees |
| ![Image](image4.png) | **Transformer**: a white toilet sitting in a white bathroom next to a sink
M^2 Transformer: a cat sitting in the toilet
AoA Transformer: a bathroom with a toilet and a sink
VisualGPT (ours): a cat sitting on top of a bathroom sink | **GT1**: a cat climbing into a bathroom sink looking at someone
GT2: a cat looks up as it stands in the bathroom sink
GT3: a large cat stands inside of a clean bathroom sink
GT4: cat is caught stepping in to the bathroom sink
GT5: a cute kitty cat in the sink of a bathroom near a brush and other items |
| ![Image](image5.png) | **Transformer**: a little girl is eating a birthday cake
M^2 Transformer: a child and a child are sitting at a table with table with table
AoA Transformer: two children sitting at a table with a laptop computer
VisualGPT (ours): a woman and a girl sitting at a table with a birthday cake | **GT1**: a woman and child stand next to a table with cake on it
GT2: a lady standing near the table with a baby is posing for the camera
GT3: a woman stands beside a baby in a high chair a table is set with a birthday cake and champagne
GT4: a woman setting up her house for a party
GT5: a person standing next to a child in a booster seat |

Table 4. Caption generated by our VisualGPT, Transformer, M^2 Transformer and AoA Transformer on 1% MS COCO data split
Figure 4. More examples of visual attention for each word in generated captions. High visual scores are in blue and low scores in red.

References

