Appendix
Proof of Eq. 2

Proof. ot
ping and adding noise, Al

Let A denote the local update before clip-
= Al - min(1, ﬁ) denote
the local update before clipping but after adding noise,
A, = A+ N(0, UIPS ) denote the local update after clip-
ping and adding noise. Then we have
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Proof of Lemma 2

Proof. According to Eq. 5 and Eq. 7, the local update
at step () of agent ¢ at round ¢ can be written as
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where g9 = 15, ‘Z (2.9)€B, sz( fal x,y). Unrolling

Eq. 15, we have
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Simplifying Ay, we have
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Replacing A; in Eq. 16 yields the desired result.

Proof of Theorem 1

Our Theorem 1 is directly obtained by applying [ [2],
Theorem 1] to the global learning process of our protocol,
with sampling probability ¢ = % and global steps T'. Refer-
ing to [2] for more details.

Proof of Theorem 2

Proof.  For convenience, we first define the following
notations:
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By Lipschitz smoothness, we have
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where d represents dimension of xﬁ’q; in the last equation
we use the fact that z! is zero mean. Next, we will analyse
the bias caused by clipping, through analyzing the first order
term in the above expression. Towards this end, we have the
following series of relations:
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Then we bound the two terms in the above expression,

respectively. To bound the first term, we have:

1 N t
1 N Q-1
(e s [ 43S o]
i=1 q=0
1 N Q-1
< (ertn [3 55wt -]
N i=1 q=0
1 N
< <Vf (z1) , mQE lNz o — Oétgf’q]>
i=1
_M ol t_ —t t,q
=5 2 Lot —a| (V] () &)
=1
N N
7’;VQZ|aft|<}VZVf] <xt>,gﬂ>
i=1 j=1
_mQN (L 4
= ot =l { (Vi ()8
=1
N
< L?VG Z\aﬁ—at\
i=1
= ' QG? (20)

~t _ 1 IV t_ =t
where &' = % > ., | — @'|. To bound the second term,
we have:
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where the second equation is because (a,b) = —3||a|* —
111b][% + 3 [la — b||* holds true for any vector a and b. Next,




we bound A, as follows: Combining Eq. 18-24, we have
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where the first inequality comes from Jensen’s inequality, 1 & 4
the third inequality comes from L-smoothness, and the last T Z E [ IVf ()] ] 1emQT [f (z1) = f (z741)]
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Asboth L 377 @' and L Y"1 @ are bounded, the big-O
Next, we turn to upper bounding the second order term convergence about T', Q, P, n;, ng is

in Eq. 18 as follows
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where the first inequation is because the bounded gradient
assumption.



