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Abstract

In this supplementary material, we provide our short-
term correlation pyramid details, semi-supervised training
procedure, training details and dataset curation.

1. Short-term Correlation Pyramid Details
To enable the network to learn detailed information, a

correlation pyramid Ci, i ∈ {2, 3, 4} is construct by in-
corporating multi-scale features. Thus for a sequence of
frame features {Fθ(It),Fθ(It+1)} ∈ RC×H/2i+1×W/2i+1

,
our short-term correlation pyramid can be denoted as
Ci(It, It+1) ∈ RH/2i+1×W/2i+1×H/2i+1×W/2i+1

. It out-
puts an aggregated feature map f

′(i)
t←t+1(It←t+1) at the pyra-

mid scale i, i ∈ {2, 3, 4}, which has the same dimen-
sion as the reference frame feature Fθ(It). For downsam-
pled neighboring frames, we set the k = {2, 4, 8} with
max-pooling kernels of growing size. We also repeat the
correlative aggregation once on every other neighboring
frame. In this way, we obtain aggregated feature maps
f
′(i)
t←t+1(It←t+2).

2. Semi-supervised Training Procedure
As the annotations are provided in the form of dense

segmentation masks for every five frames, we adopt a bi-
directional consistency check strategy to generate pseudo
masks for unlabelled frames. Given five consecutive frames
{It, It+1, It+2, It+3, It+4} and labelled ground-truth gtt,
we first estimate forward and backward optical flow fields
between frame It and It+n, n ∈ [1, 4]. Then we can pro-
duce the warped ground-truth ĝtt+n with the inverse warp-
ing from ground-truth gtt.

1.Flow Estimation. We take the ground-truth mask of
the reference frame It as an example, to generate pseudo
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Figure 1. Illustration of forward-backward consistency check. Af-
ter bi-directional check, undesirable ghosting artifacts, i.e., the
nose (red box) of the elephant in forward direction and the tail
(blue box) in backward direction, and occlusions can be effectively
removed.

ground-truth of its immediate following frame It+1. The
optical flow estimation module1 O takes It and It+1 and
predicts the optical flow field:

ux
t,t+1, u

y
t,t+1 = O(It, It+1), (1)

where ux
t,t+1 and uy

t,t+1 denote the x, y components of
the estimated flow field, respectively. The flow field maps
each pixel (x, y) in It+1 to its corresponding coordinates
(x′, y′) = (x+ ux

t,t+1(x), y + uy
t,t+1(y)) in It.

2.Forward/Backward Pseudo Labeling. Given the for-
ward optical flow sequences (flowt,flowt+n), n ∈
1, 2, 3, 4, we can obtain the aligned neighboring frame
ĝtt+n by a warping interpolation on gtt using the mapped
coordinates. After repeating the explicit alignment step for
the preceding frame, we acquire the sequence of warped
input frames {gtt, ĝtt+1, ĝtt+2, ĝtt+3, ĝtt+4}. The back-
ward pseudo ground-truth sequences are obtained by per-
forming warping ground-truth masks with backward optical
flows in the reverse order.

3.Bidirectional Consistency Check. To identify valid
masks, we adopt forward-backward consistency check

1In practice, we make use of RAFT [4] to obtain the optical flow.



to eliminate inconsistent regions. Under the forward-
backward consistency assumption [3], traversing flow vec-
tor forward and then backward should arrive at the same po-
sition. We mark pixels as invalid whenever this constraint is
violated. As shown in Figure 1, the invalid regions empha-
sized by the orange boxes are marked as background.

3. Training Details
We implement both long-term and short-term architec-

ture in PyTorch. The input images are resized to 352× 352.
We train the short-term architecture with a batch size of 8
on an NVIDIA V100 GPU and use Adam optimizer with
initial learning rate of 1e-4, decreasing every 50k iterations.
For the long-term optimization, our model takes 10 frames
as the input at one time with the frame sampling rate 1. For
our pseudo ground-truth generation, we exploit RAFT [4] as
the optical flow estimation module and pre-trained weights
on Sintel dataset [1].

4. Data Curation
• Remove Invalid Scenes. We first select and exclude

scenarios in that animals are obvious and easy to iden-
tify from the background at our first glance. After
cleaning the dataset, our new subset includes 87 video
sequences, 22,939 frames in total.

• Segmentation Masks. For annotations, we further
provide accurate human-labeled segmentation masks
for every five frames. Thus our GT consists of two for-
mats, that is 4,691 bounding box annotations as well
as 4,691 pixel-level masks.

• Pseudo Masks. We use a bidirectional optical flow-
based strategy to generate the pseudo GT masks, refer
to the SM. Note that these pseudo masks still contain
motion estimation errors, requiring algorithms to have
the capability to handle noise labels when using them.

• Dataset Split. The whole dataset is split into 71 se-
quences, 19,313 frames for training, and 16 sequences,
3,626 frames selected for testing. The summary of
each sub-sequence distribution could be found in Fig.
3.
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Figure 2. Representative samples from MoCA-Mask. The dataset is quite challenging including diverse scenes, suash as various lighting
conditions, i.e., dark and sunny, complex background, camera motions, small ratio of animals and tiny body structures, such as slim torso
/limbs.
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Figure 3. Summary for training and test set distribution. Our MoCA-Mask dataset includes 87 video sequences in total, in which 16
sequences were tagged as “unknow” (colored in orange). This split is used to validate the sensitivity of different models on novel samples.
Zoom-in for details.
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Figure 4. Comparison of our proposed network with two top-performing baselines on MoCA-Mask test dataset. Example squences of each
row means: (a) (f) Frames, (b) (g) GT, (c) (h) SINet [2], (d) (i) RCRNet [5], (e) (j) SLT-Net (Ours).


