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Appendix

We first provide more results for Mask2Former with differ-
ent backbones as well as test-set performance on standard
benchmarks (Appendix A): We use COCO panoptic [16]
for panoptic, COCO [19] for instance, and ADE20K [34]
for semantic segmentation. Then, we provide more detailed
results on additional datasets (Appendix B). Finally, we pro-
vide additional ablation studies (Appendix C) and visualiza-
tion of Mask2Former predictions for all three segmentation
tasks (Appendix D).

A. Additional results

Here, we provide more results of Mask2Former with
different backbones on COCO panoptic [16] for panoptic
segmentation, COCO [19] for instance segmentation and
ADE20K [34] for semantic segmentation. More specifi-
cally, for each benckmark, we evaluate Mask2Former with
ResNet [15] with 50 and 101 layers, as well as Swin [20]
Tiny, Small, Base and Large variants as backbones. We use
ImageNet [23] pre-trained checkpoints to initialize back-
bones.

A.1. Panoptic segmentation.

In Table I, we report Mask2Former with various back-
bones on COCO panoptic val2017. Mask2Former out-
performs all existing panoptic segmentation models with
various backbones. Our best model sets a new state-of-the-
art of 57.8 PQ.

In Table II, we further report the best Mask2Former
model on the test-dev set. Note that Mask2Former
trained only with the standard train2017 data,
achieves the absolute new state-of-the-art performance on
both validation and test set. Mask2Former even outper-
forms the best COCO competition entry which uses extra
training data and test-time augmentation.

*Work done during an internship at Facebook AI Research.

A.2. Instance segmentation.

In Table III, we report Mask2Former results ob-
tained with various backbones on COCO val2017.
Mask2Former outperforms the best single-scale model,
HTC++ [3, 20]. Note that it is non-trivial to do multi-scale
inference for instance-level segmentation tasks without in-
troducing complex post-processing like non-maximum sup-
pression. Thus, we only compare Mask2Former with other
single-scale inference models. We believe multi-scale infer-
ence can further improve Mask2Former performance and it
remains an interesting future work.

In Table IV, we further report the best Mask2Former
model on the test-dev set. Mask2Former achieves the
absolute new state-of-the-art performance on both valida-
tion and test set. On the one hand, Mask2Former is ex-
tremely good at segmenting large objects: we can even
outperform the challenge winner (which uses extra train-
ing data, model ensemble, etc.) on APL by a large margin
without any bells-and-whistles. On the other hand, the poor
performance on small objects leaves room for further im-
provement in the future.

A.3. Semantic segmentation.

In Table V, we report Mask2Former results obtained
with various backbones on ADE20K val. Mask2Former
outperforms all existing semantic segmentation models
with various backbones. Our best model sets a new state-
of-the-art of 57.7 mIoU.

In Table VI, we further report the best Mask2Former
model on the test set. Following [8], we train
Mask2Former on the union of ADE20K train and val
set with ImageNet-22K pre-trained checkpoint and use
multi-scale inference. Mask2Former is able to outperform
previous state-of-the-art methods on all metrics.

B. Additional datasets
We study Mask2Former on three image segmentation

tasks (panoptic, instance and semantic segmentation) us-
ing four datasets. Here we report additional results on
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method backbone search space epochs PQ PQTh PQSt APTh
pan mIoUpan #params. FLOPs
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DETR [2]
R50 100 queries 500+25 43.4 48.2 36.3 31.1 - - -
R101 100 queries 500+25 45.1 50.5 37.0 33.0 - - -

K-Net [32] R50 100 queries 36 47.1 51.7 40.3 - - - -
Panoptic SegFormer [18] R50 400 queries 50 50.0 56.1 40.8 - - 47M 246G

MaskFormer [8]
R50 100 queries 300 46.5 51.0 39.8 33.0 57.8 45M 181G
R101 100 queries 300 47.6 52.5 40.3 34.1 59.3 64M 248G

Mask2Former (ours)
R50 100 queries 50 51.9 57.7 43.0 41.7 61.7 44M 226G
R101 100 queries 50 52.6 58.5 43.7 42.6 62.4 63M 293G
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s

Max-DeepLab [26]
Max-S 128 queries 216 48.4 53.0 41.5 - - 62M 324G
Max-L 128 queries 216 51.1 57.0 42.2 - - 451M 3692G

Panoptic SegFormer [18] PVTv2-B5 [28] 400 queries 50 54.1 60.4 44.6 - - 101M 391G
K-Net [32] Swin-L† 100 queries 36 54.6 60.2 46.0 - - - -

MaskFormer [8]

Swin-T 100 queries 300 47.7 51.7 41.7 33.6 60.4 42M 179G
Swin-S 100 queries 300 49.7 54.4 42.6 36.1 61.3 63M 259G
Swin-B 100 queries 300 51.1 56.3 43.2 37.8 62.6 102M 411G
Swin-B† 100 queries 300 51.8 56.9 44.1 38.5 63.6 102M 411G
Swin-L† 100 queries 300 52.7 58.5 44.0 40.1 64.8 212M 792G

Mask2Former (ours)

Swin-T 100 queries 50 53.2 59.3 44.0 43.3 63.2 47M 232G
Swin-S 100 queries 50 54.6 60.6 45.7 44.7 64.2 69M 313G
Swin-B 100 queries 50 55.1 61.0 46.1 45.2 65.1 107M 466G
Swin-B† 100 queries 50 56.4 62.4 47.3 46.3 67.1 107M 466G
Swin-L† 200 queries 100 57.8 64.2 48.1 48.6 67.4 216M 868G

Table I. Panoptic segmentation on COCO panoptic val2017 with 133 categories. Mask2Former outperforms all existing panoptic
segmentation models by a large margin with different backbones on all metrics. Our best model sets a new state-of-the-art of 57.8 PQ.
Besides PQ for panoptic segmentation, we also report APTh

pan (the AP evaluated on the 80 “thing” categories using instance segmentation
annotation) and mIoUpan (the mIoU evaluated on the 133 categories for semantic segmentation converted from panoptic segmentation
annotation) of the same model trained for panoptic segmentation (note: we train all our models with panoptic segmentation annotation
only). Backbones pre-trained on ImageNet-22K are marked with †.

method backbone PQ PQTh PQSt SQ RQ

Max-DeepLab [26] Max-L 51.3 57.2 42.4 82.5 61.3
Panoptic FCN [17] Swin-L 52.7 59.4 42.5 - -
MaskFormer [8] Swin-L 53.3 59.1 44.5 82.0 64.1
Panoptic SegFormer [18] PVTv2-B5 [28] 54.4 61.1 44.3 83.3 64.6
K-Net [32] Swin-L 55.2 61.2 46.2 - -
Megvii (challenge winner) - 54.7 64.6 39.8 83.6 64.3
Mask2Former (ours) Swin-L 58.3 65.1 48.1 84.1 68.6

Table II. Panoptic segmentation on COCO panoptic test-dev with 133 categories. Mask2Former, without any bells-and-whistles,
outperforms the challenge winner (which uses extra training data, model ensemble, etc.) on the test-dev set. We only train our model
on the COCO train2017 set with ImageNet-22K pre-trained checkpoint.

Cityscapes [10], ADE20K [34] and Mapillary Vistas [22]
as well as more detailed training settings.

B.1. Cityscapes

Cityscapes is an urban egocentric street-view dataset
with high-resolution images (1024 × 2048 pixels). It con-
tains 2975 images for training, 500 images for validation
and 1525 images for testing with a total of 19 classes.
Training settings. For all three segmentation tasks: we use
a crop size of 512 × 1024, a batch size of 16 and train
all models for 90k iterations. During inference, we oper-
ate on the whole image (1024 × 2048). Other implemen-
tation details largely follow Section 4.1 (panoptic and in-
stance segmentation follow semantic segmentation training
settings), except that we use 200 queries for panoptic and

instance segmentation models with Swin-L backbone. All
other backbones or semantic segmentation models use 100
queries.

Results. In Table VII, we report Mask2Former results ob-
tained with various backbones on Cityscapes for three seg-
mentation tasks and compare it with other state-of-the-art
methods without using extra data. For panoptic segmen-
tation, Mask2Former with Swin-L backbone outperforms
the state-of-the-art Panoptic-DeepLab [6] with SWideR-
net [5] using single-scale inference. For semantic segmen-
tation, Mask2Former with Swin-B backbone outperforms
the state-of-the-art SegFormer [31].



method backbone search space epochs AP APS APM APL APboundary #params. FLOPs
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Mask R-CNN [14]

R50 dense anchors 36 37.2 18.6 39.5 53.3 23.1 44M 201G
R50 dense anchors 400 42.5 23.8 45.0 60.0 28.0 46M 358G
R101 dense anchors 36 38.6 19.5 41.3 55.3 24.5 63M 266G
R101 dense anchors 400 43.7 24.6 46.4 61.8 29.1 65M 423G

Mask2Former (ours)
R50 100 queries 50 43.7 23.4 47.2 64.8 30.6 44M 226G
R101 100 queries 50 44.2 23.8 47.7 66.7 31.1 63M 293G
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s QueryInst [12] Swin-L† 300 queries 50 48.9 30.8 52.6 68.3 33.5 - -

Swin-HTC++ [3, 20]
Swin-B† dense anchors 36 49.1 - - - - 160M 1043G
Swin-L† dense anchors 72 49.5 31.0 52.4 67.2 34.1 284M 1470G

Mask2Former (ours)

Swin-T 100 queries 50 45.0 24.5 48.3 67.4 31.8 47M 232G
Swin-S 100 queries 50 46.3 25.3 50.3 68.4 32.9 69M 313G
Swin-B 100 queries 50 46.7 26.1 50.5 68.8 33.2 107M 466G
Swin-B† 100 queries 50 48.1 27.8 52.0 71.1 34.4 107M 466G
Swin-L† 200 queries 100 50.1 29.9 53.9 72.1 36.2 216M 868G

Table III. Instance segmentation on COCO val2017 with 80 categories. Mask2Former outperforms strong Mask R-CNN [14] base-
lines with 8× fewer training epochs for both AP and APboundary [7] metrics. Our best model is also competitive to the state-of-the-art
specialized instance segmentation model on COCO and has higher boundary quality. For a fair comparison, we only consider single-scale
inference and models trained using only COCO train2017 set data. Backbones pre-trained on ImageNet-22K are marked with †.

method backbone AP AP50 AP75 APS APM APL

QueryInst [12] Swin-L 49.1 74.2 53.8 31.5 51.8 63.2
Swin-HTC++ [3, 20] Swin-L 50.2 - - - - -
Swin-HTC++ [3, 20] (multi-scale) Swin-L 51.1 - - - - -
Megvii (challenge winner) - 53.1 76.8 58.6 36.6 56.5 67.7
Mask2Former (ours) Swin-L 50.5 74.9 54.9 29.1 53.8 71.2

Table IV. Instance segmentation on COCO test-devwith 80 categories. Mask2Former is extremely good at segmenting large objects:
we can even outperform the challenge winner (which uses extra training data, model ensemble, etc.) on APL by a large margin without any
bells-and-whistles. We only train our model on the COCO train2017 set with ImageNet-22K pre-trained checkpoint.

B.2. ADE20K

Training settings. For panoptic and instance segmentation,
we use the exact same training parameters as we used for
semantic segmentation, except that we always use a crop
size of 640 × 640 for all backbones. Other implementa-
tion details largely follow Section 4.1 , except that we use
200 queries for panoptic and instance segmentation models
with Swin-L backbone. All other backbones or semantic
segmentation models use 100 queries.
Results. In Table VIII, we report the results of
Mask2Former obtained with various backbones on
ADE20K for three segmentation tasks and compare it
with other state-of-the-art methods. Mask2Former with
Swin-L backbone sets a new state-of-the-art performance
on ADE20K for panoptic segmentation. As there are
few papers reporting results on ADE20K, we hope this
experiment could set up a useful benchmark for future
research.

B.3. Mapillary Vistas

Mapillary Vistas is a large-scale urban street-view
dataset with 18k, 2k and 5k images for training, validation
and testing. It contains images with a variety of resolutions,
ranging from 1024 × 768 to 4000 × 6000. We only report
panoptic and semantic segmentation results for this dataset.

Training settings. For both panoptic and semantic segmen-
tation, we follow the same data augmentation of [8]: stan-
dard random scale jittering between 0.5 and 2.0, random
horizontal flipping, random cropping with a crop size of
1024 × 1024 as well as random color jittering. We train
our model for 300k iterations with a batch size of 16 using
the “poly” learning rate schedule [4]. During inference, we
resize the longer side to 2048 pixels. Our panoptic segmen-
tation model with a Swin-L backbone uses 200 queries. All
other backbones or semantic segmentation models use 100
queries.

Results. In Table IX, we report Mask2Former results
obtained with various backbones on Mapillary Vistas for
panoptic and semantic segmentation tasks and compare it
with other state-of-the-art methods. Our Mask2Former is
very competitive compared to state-of-the art specialized
models even if it is not designed for Mapillary Vistas.

C. Additional ablation studies

We perform additional ablation studies of Mask2Former
using the same settings that we used in the main paper: a
single ResNet-50 backbone [15].



method backbone crop size mIoU (s.s.) mIoU (m.s.) #params. FLOPs

C
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MaskFormer [8]
R50 512 × 512 44.5 46.7 41M 53G
R101 512 × 512 45.5 47.2 60M 73G

Mask2Former (ours)
R50 512 × 512 47.2 49.2 44M 71G
R101 512 × 512 47.8 50.1 63M 90G
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Swin-UperNet [20, 30] Swin-L† 640 × 640 - 53.5 234M 647G
FaPN-MaskFormer [8, 21] Swin-L† 640 × 640 55.2 56.7 - -
BEiT-UperNet [1, 30] BEiT-L† 640 × 640 - 57.0 502M -

MaskFormer [8]

Swin-T 512 × 512 46.7 48.8 42M 55G
Swin-S 512 × 512 49.8 51.0 63M 79G
Swin-B 640 × 640 51.1 52.3 102M 195G
Swin-B† 640 × 640 52.7 53.9 102M 195G
Swin-L† 640 × 640 54.1 55.6 212M 375G

Mask2Former (ours)

Swin-T 512 × 512 47.7 49.6 47M 74G
Swin-S 512 × 512 51.3 52.4 69M 98G
Swin-B 640 × 640 52.4 53.7 107M 223G
Swin-B† 640 × 640 53.9 55.1 107M 223G
Swin-L† 640 × 640 56.1 57.3 215M 403G
Swin-L-FaPN† 640 × 640 56.4 57.7 217M -

Table V. Semantic segmentation on ADE20K val with 150 categories. Mask2Former consistently outperforms MaskFormer [8] by
a large margin with different backbones (all Mask2Former models use MSDeformAttn [35] as pixel decoder, except Swin-L-FaPN uses
FaPN [21]). Our best model outperforms the best specialized model, BEiT [1], with less than half of the parameters. We report both
single-scale (s.s.) and multi-scale (m.s.) inference results. Backbones pre-trained on ImageNet-22K are marked with †.

method backbone P.A. mIoU score

SETR [33] ViT-L 78.35 45.03 61.69
Swin-UperNet [20, 30] Swin-L 78.42 47.07 62.75
MaskFormer [8] Swin-L 79.36 49.67 64.51
Mask2Former (ours) Swin-L-FaPN 79.80 49.72 64.76

Table VI. Semantic segmentation on ADE20K test with 150 categories. Mask2Former outperforms previous state-of-the-art methods
on all three metrics: pixel accuracy (P.A.), mIoU, as well as the final test score (average of P.A. and mIoU). We train our model on the
union of ADE20K train and val set with ImageNet-22K pre-trained checkpoint following [8] and use multi-scale inference.

C.1. Convergence analysis

We train Mask2Former with 12, 25, 50 and 100
epochs with either standard scale augmentation (Standard
Aug.) [29] or the more recent large-scale jittering aug-
mentation (LSJ Aug.) [11, 13]. As shown in Figure IV,
Mask2Former converges in 25 epochs using standard aug-
mentation and almost converges in 50 epochs using large-
scale jittering augmentation. This shows that Mask2Former
with our proposed Transformer decoder converges faster
than models using the standard Transformer decoder: e.g.,
DETR [2] and MaskFormer [8] require 500 epochs and 300
epochs respectively.

C.2. Masked attention analysis

We quantitatively and qualitatively analyzed the COCO
panoptic model with the R50 backbone. First, we visual-
ize the last three attention maps of our model using cross-
attention (Figure Ia top) and masked attention (Figure Ia
bottom) of a single query that predicts the “cat.” With
cross-attention, the attention map spreads over the entire
image and the region with highest response is outside the
object of interest. We believe this is because the softmax

(a) Visualization of cross-attention (top) and masked attention (bottom) for different
resolutions.

1/32 1/16 1/8 average
fg bg fg bg fg bg fg bg

cross-attention 0.23 0.77 0.23 0.77 0.15 0.85 0.20 0.80
masked attention 0.53 0.47 0.61 0.39 0.64 0.36 0.59 0.41

(b) Cumulative attention weights on foreground (fg) and background (bg) regions for
different resolutions.

Figure I. Masked attention analysis.

used in cross-attention never attains zero, and small atten-
tion weights on large background regions start to dominate.
Instead, masked attention limits the attention weights to fo-
cus on the object. We validate this hypothesis in Table Ib:
we compute the cumulative attention weights on foreground
(defined by the matching ground truth to each prediction)
and background for all queries on the entire COCO val



panoptic model instance model semantic model
method backbone PQ (s.s.) PQ (m.s.) APTh

pan mIoUpan AP AP50 mIoU (s.s.) mIoU (m.s.)

Panoptic-DeepLab [6]
R50 60.3 - 32.1 78.7 - - - -
X71 [9] 63.0 64.1 35.3 80.5 - - - -
SWideRNet [5] 66.4 67.5 40.1 82.2 - - - -

Panoptic FCN [17] Swin-L† 65.9 - - - - - - -
Segmenter [24] ViT-L† - - - - - - - 81.3
SETR [33] ViT-L† - - - - - - - 82.2
SegFormer [31] MiT-B5 - - - - - - - 84.0

Mask2Former (ours)

R50 62.1 - 37.3 77.5 37.4 61.9 79.4 82.2
R101 62.4 - 37.7 78.6 38.5 63.9 80.1 81.9
Swin-T 63.9 - 39.1 80.5 39.7 66.9 82.1 83.0
Swin-S 64.8 - 40.7 81.8 41.8 70.4 82.6 83.6
Swin-B† 66.1 - 42.8 82.7 42.0 68.8 83.3 84.5
Swin-L† 66.6 - 43.6 82.9 43.7 71.4 83.3 84.3

Table VII. Image segmentation results on Cityscapes val. We report both single-scale (s.s.) and multi-scale (m.s.) inference results
for PQ and mIoU. All other metrics are evaluated with single-scale inference. Since Mask2Former is an end-to-end model, we only use
single-scale inference for instance-level segmentation tasks to avoid the need for further post-processing (e.g., NMS).

panoptic model instance model semantic model
method backbone PQ APTh

pan mIoUpan AP APS APM APL mIoU (s.s.) mIoU (m.s.)

MaskFormer [8] R50 34.7 - - - - - - - -
Panoptic-DeepLab [6] SWideRNet [5] 37.9∗ - 50.0∗ - - - - - -
Swin-UperNet [20, 30] Swin-L† - - - - - - - - 53.5
MaskFormer [8] Swin-L† - - - - - - - 54.1 55.6
FaPN-MaskFormer [8, 21] Swin-L† - - - - - - - 55.2 56.7
BEiT-UperNet [1, 30] BEiT-L† - - - - - - - - 57.0

Mask2Former (ours)
R50 39.7 26.5 46.1 26.4 10.4 28.9 43.1 47.2 49.2
Swin-L† 48.1 34.2 54.5 34.9 16.3 40.0 54.7 56.1 57.3
Swin-L-FaPN† 46.2 33.2 55.4 33.4 14.6 37.6 54.6 56.4 57.7

Table VIII. Image segmentation results on ADE20K val. Mask2Former is competitive to specialized models on ADE20K. Panoptic
segmentation models use single-scale inference by default, multi-scale numbers are marked with ∗. For semantic segmentation, we report
both single-scale (s.s.) and multi-scale (m.s.) inference results.

1 2 3 4 5 6 7 8 9
Transformer decoder layer

40.0

42.5

45.0

47.5

50.0

52.5

P
Q

cross-attention

masked attention

Figure II. Panoptic segmentation performance of each Transformer
decoder layer.

set. On average, only 20% of the attention weights in cross-
attention focus on the foreground while masked attention
increases this ratio to almost 60%. Second, we plot the
panoptic segmentation performance using output from each
Transformer decoder layer (Figure II). We find masked at-

tention with a single Transformer decoder layer already out-
performs cross-attention with 9 layers. We hope the effec-
tiveness of masked attention, together with this analysis,
leads to better attention design.

C.3. Object query analysis

Object queries play an important role in Mask2Former.
We ablate different design choices of object queries includ-
ing the number of queries and making queries learnable.
Number of queries. We study the effect of different num-
ber of queries for three image segmentation tasks in Ta-
ble Xa. For instance and semantic segmentation, using
100 queries achieves the best performance, while using 200
queries can further improve panoptic segmentation results.
As panoptic segmentation is a combination of instance and
semantic segmentation, it has more segments per image
than the other two tasks. This ablation suggests that pick-
ing the number of queries for Mask2Former may depend on
the number of segments per image for a particular task or
dataset.
Learnable queries. An object query consists of two parts:
object query features and object query positional embed-



panoptic model semantic model
method backbone PQ mIoUpan mIoU (s.s.) mIoU (m.s.)

Panoptic-DeepLab [6]
ensemble 42.2∗ 58.7∗ - -
SWideRNet [5] 43.7 59.4 - -
SWideRNet [5] 44.8∗ 60.0∗ - -

Panoptic FCN [17] Swin-L† 45.7 - - -
MaskFormer [8] R50 - - 53.1 55.4
HMSANet [25] HRNet [27] - - - 61.1

Mask2Former (ours)
R50 36.3 50.7 57.4 59.0
Swin-L† 45.5 60.8 63.2 64.7

Table IX. Image segmentation results on Mapillary Vistas val. Mask2Former is competitive to specialized models on Mapillary Vistas.
Panoptic segmentation models use single-scale inference by default, multi-scale numbers are marked with ∗. For semantic segmentation,
we report both single-scale (s.s.) and multi-scale (m.s.) inference results.

dings. Object query features are only used as the initial
input to the Transformer decoder and are updated through
decoder layers; whereas query positional embeddings are
added to query features in every Transformer decoder layer
when computing the attention weights. In DETR [2], query
features are zero-initialized and query positional embed-
dings are learnable. Furthermore, there is no direct su-
pervision on these query features before feeding them into
the Transformer (since they are zero vectors). In our
Mask2Former, we still make query positional embeddings
learnable. In addition, we make query features learnable
as well and directly apply losses on these learnable query
features before feeding them into the Transformer decoder.

In Table Xb, we compare our learnable query features
with zero-initialized query features in DETR. We find it
is important to directly supervise object queries even be-
fore feeding them into the Transformer decoder. Learnable
queries without supervision perform similarly well as zero-
initialized queries in DETR.

C.4. MaskFormer vs. Mask2Former

Mask2Former builds upon the same meta architecture
as MaskFormer [8] with two major differences: 1) We
use more advanced training parameters summarized in Ta-
ble XIa; and 2) we propose a new Transformer decoder with
masked attention, instead of using the standard Transformer
decoder, as well as some optimization improvements sum-
marized in Table XIb. To better understand Mask2Former’s
improvements over MaskFormer, we perform ablation stud-
ies on training parameter improvements and Transformer
decoder improvements in isolation.

In Table XIc, we study our new training parameters. We
train the MaskFormer model with either its original train-
ing parameters in [8] or our new training parameters. We
observe significant improvements of using our new training
parameters for MaskFormer as well. This shows the new
training parameters are also generally applicable to other
models.

In Table XId, we study our new Transformer decoder.

200 400 600 800
GFLOPs

48

50

52

54

56

58

P
Q

MaskFormer

Mask2Former (ours)

Figure III. MaskFormer [8] vs. Mask2Former (ours) with different
Swin Transformer backbones.

We train a MaskFormer model and a Mask2Former model
with the exact same backbone, i.e., a ResNet-50; pixel de-
coder, i.e., a FPN; and training parameters. That is, the only
difference is in the Transformer decoder, summarized in Ta-
ble XIb. We observe improvements for all three tasks, sug-
gesting that the new Transformer decoder itself is indeed
better than the standard Transformer decoder.

While computational efficiency was not our primary
goal, we find that Mask2Former actually has a better
compute-performance trade-off compared to MaskFormer
(Figure III). Even the lightest instantiation of Mask2Former
outperforms the heaviest MaskFormer instantiation, using
1
4

th the FLOPs.

D. Visualization
We visualize sample predictions of the Mask2Former

model with Swin-L [20] backbone on three tasks: COCO
panoptic val2017 set for panoptic segmentation (57.8 PQ)
in Figure V, COCO val2017 set for instance segmenta-
tion (50.1 AP) in Figure VI and ADE20K validation set for
semantic segmentation (57.7 mIoU, multi-scale inference)
in Figure VII.
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Figure IV. Convergence analysis. We train Mask2Former with different epochs using either standard scale augmentation (Standard
Aug.) [29] or the more recent large-scale jittering augmentation (LSJ Aug.) [11, 13]. Mask2Former converges in 25 epochs using standard
augmentation and almost converges in 50 epochs using large-scale jittering augmentation. Using LSJ also improves performance with
longer training epochs (i.e., with more than 25 epochs).

AP
(COCO)

PQ
(COCO)

mIoU
(ADE20K)

FLOPs
(COCO)

50 42.4 50.5 46.2 217G
100 43.7 51.9 47.2 226G
200 43.5 52.2 47.0 246G
300 43.5 52.1 46.5 265G
1000 40.3 50.7 44.8 405G

(a) Number of queries ablation. For instance and semantic segmentation, using 100
queries achieves the best performance while using 200 queries can further improve
panoptic segmentation results.

AP
(COCO)

PQ
(COCO)

mIoU
(ADE20K)

FLOPs
(COCO)

zero-initialized (DETR [2]) 42.9 51.2 45.5 226G
learnable w/o supervision 42.9 51.2 47.0 226G
learnable w/ supervision 43.7 51.9 47.2 226G

(b) Learnable queries ablation. It is important to supervise object queries before feed-
ing them into the Transformer decoder. Learnable queries without supervision perform
similarly well as zero-initialized queries in DETR.

Table X. Analysis of object queries. Table Xa: ablation on number of queries. Table Xb: ablation on using learnable queries.
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(b) Comparison of Transformer decoder in MaskFormer [8] and our Mask2Former. SA: self-attention, CA: cross-attention, FFN: feed-forward network, MA: masked attention,
p.e.: positional embedding.
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