
Supplementary Materials: Pointly-Supervised Instance Segmentation

Bowen Cheng1* Omkar Parkhi2 Alexander Kirillov2

1UIUC 2Facebook AI

Acknowledgments. We would like to thank Ross Girshick,
Yuxin Wu, Piotr Dollár, Alex Berg, Tamara Berg, and Elisa
Berger for useful discussions and advices.

A. Introduction
We first provide more details for the point classifica-

tion annotation tool in section B. In section C, we provide
additional ablation experiments analyzing overfitting with
point-based supervision as well as a more detailed study of
the proposed point-based data augmentation. Section E dis-
cusses annotation time for COCO dataset [8] with different
types of supervision. Finally, we conduct a thorough analy-
sis of Implicit PointRend in section F.

B. Annotation Pipeline
To estimate the speed and quality of the point-based an-

notation scheme we developed a simple labeling tool. The
screenshot of its interface is shown in Figure 1. An an-
notator is presented with randomly sampled points one by
one for each object. Our tool shows two views for a point.
The first view contains the whole object together with its
bounding box, category, and a point marker. The view is
centered around the object bounding box with additional
margins for context. Apart from the location of the point
marker, this view does not change between different points.
Note, that the point marker can be small and hard to spot
for large objects. To make it more visible we add a green
box around the point in this view. The second view shows
zoomed in area centered around the point to help classify
harder cases. Such two views system allows an annotator to
classify points without the need to zoom in on them manu-
ally. Our experiments with COCO data show that a trained
annotator labels a point in less than a second (0.8 – 0.9 sec-
onds on average).

We estimate the quality of our point annotation by check-
ing its labels against ground truth masks. We observed
∼90% agreement between points and instance masks on
COCO. Upon closer analysis, we find that most of the errors
are due to inaccurate boundaries in COCO polygon-based
annotation (see Figure 2).

*Work done during an internship at Facebook AI Research.

Figure 1. Screenshot of the point annotation tool. For each
object, points are presented one by one. The tool uses two views
of each point to simplify the task: (right) view shows the whole
object annotated with a bounding box and a category. The point is
depicted as a purple circle surrounded with a green box to simplify
its spotting; For small objects, this view is cropped around the
bounding box with margins for context; (left) view shows zoomed
in patch of the image centered around the point to classify. This
view helps to correctly classify points that are close to boundaries.

Estimation for various annotation pipelines. Different
annotation collection pipelines for instance segmentation
use different protocols for object spotting and categoriza-
tion stages [2, 6, 8]. Note, that time t spent on these stages
is the same no matter what annotation form for instances
is used. For the original COCO annotation pipeline, t is
43.2 seconds per instance, thanks to multiple additional ver-
ification steps [8]. In Figure 3 we compute total annota-
tion time needed to achieve 31.8 AP on COCO1 with dif-
ferent types of supervision for any t ≥ 0. We observe,
that the point-based annotation is more efficient for label-

1BoxInst [13] performance with full COCO train2017 set.

1



sheep

Figure 2. Point annotation vs. polygon-based mask on COCO.
Red points were annotated as object and blue as background. Note,
that 3 points (two near both ears and one between the front legs)
have correct labels but do not match to the polygon-based mask
annotation. We observe that on COCO most of disagreement be-
tween point labels and ground truth masks have similar nature.

1 2 10 100 237
Categorization and spotting time (t seconds)

100

300

1000

A
n

n
ot

at
io

n
ti

m
e

(d
ay

s)

point annotation is cheaper

10 points

mask

box

Figure 3. Total annotation time to achieve 31.8 AP on COCO
depending on the speed of categorization and spotting stages. Box-
Inst [13] trained with boxes achieves this performance on full
COCO train2017. Whereas, Mask R-CNN needs only ∼40%
and ∼50% of the train set with mask and points supervision re-
spectively. Using this data, we estimate that point-based annota-
tion is more efficient for labeling pipelines where the spotting and
categorization stages take between 2 and 237 seconds per instance.

ing pipelines where the spotting and categorization stages
take between 2 and 237 seconds per instance on average.

C. Overfitting and Point-based Augmentation

Overfitting with longer training schedules. In our exper-
iments with the COCO dataset [7], we observe that the gap
between Mask R-CNN models [3] trained with full mask
and point-based (10 points) supervision increases for longer
training schedules. For example, for a ResNet-50-FPN [4,7]
backbone, the gap is 0.9 AP (35.2 AP vs. 34.3 AP) for 1×
schedule, but grows to 1.1 AP (37.2 AP vs. 36.1 AP) for
longer 3× schedule. We hypothesize that this is caused by a
reduced variability of training data when only a few points
are available and propose a simple point-based data aug-
mentation strategy to counter the effect. Note, that in our
paper we train all COCO models with 3× schedule.

Point-based data augmentation analysis. The proposed
point-based augmentation randomly samples half of the
points for a box at each iteration instead of using all of them.
We vary the number of sampled points (with 1, 3, 5, 7, or 9
points) for 10 points ground truth and find that taking only
1 or 3 points is too aggressive while the results are similar
when sampling 5, 7, or 9 points.

D. More Analysis on Point-based Annotation

Point sampling schemes. The advantage of using one ran-
dom point over one click has been shown in [1]. We are not
able to make direct comparison with multiple clicks since
the reliable simulation of clicks is impossible and collect-
ing such annotation for large-scale datasets used in our draft
is prohibitively expensive for an ablation. We observe that
random points are already close to full supervision while
being more efficient to collect and simulate. We further
explore non-uniform sampling scheme by sampling more
points close to boundaries on COCO. We observe the per-
formance of a Mask R-CNN model decreases more with a
heavier bias – uniform: 36.1 AP, mildly biased to bound-
aries: 35.5 AP, heavily biased to boundaries: 27.5 AP.

Point-based annotation for rare objects. We re-generate
P10 3 times for LVIS dataset [2] which has a lot of rare cat-
egories (occur in < 10 images). For each version, we train
a Mask R-CNN 3 times and the mean and std of AP for rare
classes are: 10.8±0.85, 10.2±0.30 and 10.7±0.40. The std
over 3 dataset versions is 0.26 which is smaller than the std
(0.78) for model trained with mask supervision2. This sug-
gests that sampling 10 random points is sufficiently robust
for rare categories.

E. COCO Annotation Time

The annotation protocol of the COCO dataset [8] has 3
stages: (1) category labeling, (2) instance spotting and (3)
mask annotation. The creators of the COCO dataset report
detailed timing of each stage on all annotated images. Here,
we summarize the annotation time per instance for different
types of supervision.

Category labeling and instance spotting. Category la-
beling is the task of determining which object categories
are present in each image. This step takes around 7,000
hours to annotate 118,287 images with 849,949 instances
(train2017 set), suggesting the time of category label-
ing is 28.8 seconds per instance. The instance spotting stage
places a cross on top of each instance. This step takes 3,500
hours to annotate 118,287 images with 849,949 instances.
Thus, instance spotting takes 14.4 seconds per instance.
Note that, in order to achieve a high recall, both category

2https://www.lvisdataset.org/bestpractices

https://www.lvisdataset.org/bestpractices


supervision notation COCO annotation time (days)
bounding box B 493
mask M 1204
our point-based P10 582

Table 1. Annotation times for different types of supervision
on COCO train2017. We report the time to annotate 118,287
images with 849,949 instances. B: bounding box supervision, M:
mask supervision, and P10: our point-based supervision with a
bounding box and 10 points labels per instance.

labeling and instance spotting are performed with 8 work-
ers for every image and the total annotation time mentioned
before is the sum of 8 workers.

Bounding box annotation. Since the original COCO pro-
tocol does not annotate instances by bounding boxes, we
approximate the time of bounding box annotation (B) as 7
seconds for a spotted instance which can be achieved with
extreme clicks technique [9]. Taken into account category
labeling and instance spotting, bounding box annotation (B)
takes 28.8 (category labeling) + 14.4 (instance spotting) +
7.0 (box) = 50.2 seconds per instance.

Mask annotation. Polygon-based mask annoation in
COCO takes 22 hours per 1,000 instances or ∼79.2
seconds per instance. Together with category la-
beling and instance spotting, mask annotation (M)
takes 28.8 (category labeling) + 14.4 (instance spotting) +
79.2 (mask) = 122.4 seconds per instance.

Our point-based annotation. Given the bounding
box, it takes annotator 0.8 – 0.9 seconds on av-
erage to provide the binary label for each point.
Thus, our point-based annotation with 10 points
(P10) takes 50.2 (bounding box annotation) + 0.9 ×
10 (10 points per instance) = 59.2 seconds per in-
stance which is more than 2 times faster than mask
annotation if the time of categorization and spotting
stages is included. For datasets with bounding box
annotations [6, 10], our point annotations takes only
0.9 × 10(10 points per instance) = 9 seconds per instance
which is more than 8 times faster than the polygon-based
mask annotation (79.2 seconds per instance). In Table 1, we
report the annotation time for different annoation format on
COCO train2017 set, which contains 118,287 images
and 849,949 instances.

F. Implicit PointRend

In this section, we ablate the design of the Implicit
PointRend module and report its performance with full
mask supervision for reference.

point aug. Mask R-CNN [3] PointRend [5] Implicit PointRend
36.1 35.6 36.0

✓ 36.0 (-0.1) 35.7 (+0.1) 36.9 (+0.9)

Table 2. Point-based augmentation for various models with
a ResNet-50-FPN [4, 7] backbone. All model are trained with
10 points supervision on COCO train2017 and mask AP on
val2017 is reported. The new augmentation is more effective
for Implicit PointRend as the new module has higher capacity in
representing object masks with its parameter head.

coord. AP (P10) AP (M)
none 35.2 37.7
rel. 36.6 (+1.4) 38.5 (+0.8)
p.e. 36.9 (+1.7) 38.5 (+0.8)

(a) Coordinates.

features AP (P10) AP (M)
none 35.3 37.1
p2 36.9 (+1.6) 38.5 (+1.4)

(b) Image-level features.

Table 3. Implicit PointRend ablations on COCO train2017
with ResNet-50-FPN [4, 7] backbone. AP (P10) is mask AP for
point-based supervision and AP (M) is mask AP for full mask
supervision. Table 3a: Implicit PointRend utilizes the relative
coordinate w.r.t. the box point-level information (rel.) to im-
prove instance segmentation performance. Positional encoding
representation for the coordinate (p.e.) [11] further improve re-
sults. Table 3b: Implicit PointRend can achieve reasonable per-
formance with only the positional encoding as the input to its
point head (none). Image-level point features from the p2 level
of FPN [7] backbone (p2) further improve the performance

F.1. Ablation study

For the ablation experiments we use a ResNet-50 [4]
backbone with FPN [7], 3× schedule and point-based data
augmentation.

Point-based data augmentation. We observe that point-
based data augmentation does not significantly improve per-
formance for Mask R-CNN [3] and PointRend [5] with a
ResNet-50-FPN backbone (see Table 2). Whereas, Implicit
PointRend shows 0.9 AP gain with the augmentation. We
hypothesize that the augmentation is more effective for Im-
plicit PointRend as the new module has a higher capacity in
representing object masks with its parameter head.

Point-level feature representation. The point head of Im-
plicit PointRend takes two types of features as input: point
coordinate relative to the bounding box and image-level
point features. Next, we ablate both components.

In Table 3a, we show that adding the relative coordinate
w.r.t. the box is already effective, giving an improvement of
1.4 AP with point-based supervision and 0.8 AP with mask
supervision. Encoding the coordinate with a positional en-
coding [11] further improves the mask prediction by 0.3 AP
for point-based supervision. Without the coordinates, the
mask head of Implicit PointRend is translation invariant and



cannot distinguish two points with similar appearance in the
same bounding box. PointRend [5] breaks the invariance by
taking coarse mask prediction as input.

Table 3b shows that Implicit PointRend can achieve rea-
sonable performance with only the positional encoding as
the input to its point head. Image-level point features from
the p2 level of FPN [7] backbone further improve the per-
formance by 1.6 AP with point-based supervision and 1.4
AP with mask supervision. These experiments suggest that
both coordinate and image-level features are essential for
the overall performance of Implicit PointRend.

F.2. Mask supervision results

We compare Implicit PointRend with several instance
segmentation approaches on the COCO dataset [8] with
full mask supervision. The module design is mo-
tivated by our point-based supervision, however, Ta-
ble 4 shows that Implicit PointRend is also a competi-
tive method for fully-supervised instance segmentation as
well. While both CondInst [12] and Implicit PointRend
use an instance-dependent function to predict masks, Im-
plicit PointRend outperforms CondInst by a large margin.
Implicit PointRend is able to match the performance of
PointRend [5] without the coarse mask prediction and im-
portance sampling procedure during training. We note that
the small gap (less than 0.3 AP) between Implicit PointRend
and PointRend mostly comes from large objects. We hy-
pothesize that the fixed-size feature map (e.g., 14× 14) ex-
tracted from p2 FPN level is too coarse to generate point
head parameters to accurately segment large objects. A
simple fix could be dynamically choosing the FPN levels
to pool feature like the box head [7]. In our experiments
such design gave a small 0.1-0.2 AP boost for Implicit
PointRend results. We expect a better design for the pa-
rameter head can further improve Implicit PointRend per-
formance. Moreover, PointRend is trained with a more
complex importance sampling while much simpler uniform
sampling is used for Implicit PointRend, which may also
lead to the small drop when larger backbones are used.

References

[1] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li
Fei-Fei. What’s the point: Semantic segmentation with point
supervision. In ECCV, 2016.

[2] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A
dataset for large vocabulary instance segmentation. In ICCV,
2019.

[3] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

backb. LRS AP AP50 AP75 APS APM APL

Mask
R-CNN [3]

R50 1× 35.2 56.3 37.5 17.2 37.7 50.3
R50 3× 37.2 58.6 39.9 18.6 39.5 53.3
R101 3× 38.6 60.4 41.3 19.5 41.3 55.3
X101 3× 39.5 61.7 42.6 20.7 42.0 56.5

CondInst [12]
R50 1× 35.7 - - - - -
R50 3× 37.5 - - - - -
R101 3× 38.6 - - - - -

PointRend [5]

R50 1× 36.2 56.6 38.6 17.1 38.8 52.5
R50 3× 38.3 59.1 41.1 19.1 40.7 55.8
R101 3× 40.1 61.1 43.0 20.0 42.9 58.6
X101 3× 41.1 62.8 44.2 21.5 43.8 59.1

Implicit
PointRend

R50 1× 36.9 57.3 39.6 17.7 39.4 53.1
R50 3× 38.5 59.4 41.4 18.9 41.1 55.0
R101 3× 39.9 61.1 43.0 20.3 42.7 58.0
X101 3× 40.8 62.6 43.9 21.5 43.5 57.3

Table 4. Instance segmentation results with full mask super-
vision on COCO val2017. LRS: learning rate schedule; a
1× learning rate schedule refers to 90,000 iterations. R50,101:
ResNet-50,101 [4]. X101: ResNext-101 32× 8d [14]. All models
use FPN [7]. The proposed Implicit PointRend also performs bet-
ter than Mask R-CNN [3] and comparable to PointRend [5] under
full mask supervision.

[5] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. PointRend: Image segmentation as rendering. In
CVPR, 2020.

[6] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig,
and Vittorio Ferrari. The open images dataset v4: Unified
image classification, object detection, and visual relationship
detection at scale. IJCV, 2020.

[7] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV, 2014.

[9] Dim P Papadopoulos, Jasper RR Uijlings, Frank Keller, and
Vittorio Ferrari. Extreme clicking for efficient object anno-
tation. In ICCV, 2017.

[10] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang
Yu, Xiangyu Zhang, Jing Li, and Jian Sun. Objects365:
A large-scale, high-quality dataset for object detection. In
ICCV, 2019.

[11] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features



let networks learn high frequency functions in low dimen-
sional domains. In NIPS, 2020.

[12] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convo-
lutions for instance segmentation. In ECCV, 2020.

[13] Zhi Tian, Chunhua Shen, Xinlong Wang, and Hao Chen.
BoxInst: High-performance instance segmentation with box
annotations. In CVPR, 2021.

[14] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, 2017.


