
Appendices of
InfoGCN: Representation Learning for Human Skeleton-based Action Recognition

A. Derivation from Objective to Loss
IB Objective The objective I(Z;Y ) − β1I(Z;X) based
on the information bottleneck (IB) can be transformed into
I(Z;Y )− λ1I(Z;X)− λ2I(Z;X|Y ) using a relation ob-
tained from either the chain rule for conditional mutual in-
formation or interaction information.

Conditional mutual information is the mutual informa-
tion of two random variables given a conditional variable.
The chain rule for (conditional) mutual information can be
described as

I(X;Y |Z) = I(X;Y,Z)− I(X;Z) (1)
I(X;Y,Z) = I(X;Z) + I(X;Y |Z). (2)

On the other hand, interaction information is a generalized
version of mutual information for multiple variables. Us-
ing the relationship between mutual information and condi-
tional mutual information, interaction information for three
variables X,Y , and Z can be defined as follows

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z) (3)
= I(X;Z)− I(X;Z|Y ) (4)
= I(Y ;Z)− I(Y ;Z|X). (5)

Since interaction information has a symmetric property for
variables as in mutual information, it does not matter which
variable is condition.

Our model follows the graphical assumption (Z ← X ↔
Y ) in prior studies [1,5] based on the information bottleneck
objective; thus, the variables Z and Y become independent
when X is observed. i.e, Z ⊥ Y |X . From this, we can de-
rive the following relation from the chain rule or interaction
information:

I(Z;X) = I(Z;Y ) + I(Z;X|Y ). (6)
I(Z;Y ) = I(Z;X)− I(Z;X|Y ). (7)

In detail, using the chain rule and conditional independent
assumption, we have

I(Z;X|Y ) = I(Z;X,Y )− I(Z;Y ) (8)

⇒ I(Z;X|Y ) = I(Z;X,��Y )− I(Z;Y ) (9)
⇒ I(Z;X) = I(Z;Y ) + I(Z;X|Y ). (10)

Meanwhile, using conditional independent assumption and
the equality between Eq. (4) and Eq. (5), we can derive

I(Z;X)− I(Z;X|Y )=I(Z;Y )− I(Z;Y |X) (11)
⇒ I(Z;X)− I(Z;X|Y )=I(Z;Y )−�����I(Z;Y |X) (12)

⇒ I(Z;X)=I(Z;Y ) + I(Z;X|Y ). (13)

From the IB objective, the equivalent objective that we pro-
pose can be derived in two ways using one of the relations
in Eqs. (6) and (7). Here, we introduce the derivation of
our objective using Eq. (6). First, we decompose the mu-
tual information term I(Z;X) in the IB objective with a
new coefficient β2, replacing one of the decomposed terms
using the relation in Eq. (6), and expand the objective as
follows

I(Z;Y )− β1I(Z;X) (14)
=I(Z;Y )− β1(1− β2 + β2)I(Z;X) (15)

=I(Z;Y )− β1β2I(Z;X)− β1(1− β2)
(
I(Z;Y )

+ I(Z;X|Y )
)

(16)

=
(
1− β1(1− β2)

)
I(Z;Y )− β1β2I(Z;X)

− β1(1− β2)I(Z;X|Y ). (17)

Since a scaling of the objective is independent of optimiza-
tion, we can normalize the coefficients as

I(Z;Y )− β1β2

1− β1(1− β2)
I(Z;X)

− β1(1− β2)

1− β1(1− β2)
I(Z;X|Y ). (18)

In particular, if β2 = 1, the second term in Eq. (18) becomes
zero, which reduces Eq. (18) to the IB objective in VIB [1],
and if β2 = 0, the third term becomes zero, which reduces
Eq. (18) to the objective in CEB [5]. We simplify it by
introducing new coefficients as

I(Z;Y )− λ1I(Z;X)− λ2I(Z;X|Y ), (19)

where coefficient λ1 = β1β2

1−β1(1−β2)
and λ2 = β1(1−β2)

1−β1(1−β2)
.
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Varitional Bound for IB Objective Let us consider mu-
tual information I(Z;Y ), which is defined as

I(Z;Y ) = Ep(z,y)

[
log

p(z, y)

p(z)p(y)

]
(20)

= Ep(z,y)

[
log

p(y|z)
p(y)

]
. (21)

We assume that our model follows the graphical model, and
the only accessible content is p(z|x) as in [1, 5]. In mu-
tual information, the decoding distribution p(y|z) entails
the expectation over x, derived from the accessible content
p(z|x), which is generally intractable, since it is difficult to
directly access the underlying distribution. We resolve the
intractability of p(y|z) by introducing a variational approx-
imation, which is denoted as q(y|z).

I(Z;Y ) ≥ Ep(z,y)[log
q(y|z)
p(y)

] (22)

= Ep(z,y)[log q(y|z)] +H(Y ). (23)

The inequality holds since DKL

(
p(y|z)||q(y|z)

)
≥ 0. The

entropy term H(Y ) can be ignored because it is irrelevant
to optimization when the dataset is given.

Similarly, the definition of mutual information I(Z;X)
is as follows

I(Z;X) = Ep(z,x)[log
p(z, x)

p(z)p(x)
] (24)

= Ep(z,x)[log
p(z|x)
p(z)

]. (25)

By marginalizing out x from the joint distribution p(z, x),
p(z) can be obtained. However, since it is generally in-
tractable, a variational approximation to p(z), called r(z),
is used to approximate p(z).

I(Z;X) ≤ Ep(z,y)[log
p(z|x)
r(z)

]. (26)

The inequality holds since DKL

(
p(z)||r(z)

)
≥ 0.

Mutual information I(Z;X|Y ) is a conditional version
of I(Z;X). The definition of I(Z;X|Y ) is in Eq. (27), and
its variational bound is derived by introducing a variational
distribution r(z|y).

I(Z;X|Y ) = Ep(z,x,y)[log
p(z|x, y)
p(z|y)

] (27)

≤ Ep(z,x,y)[log
p(z|x)
r(z|y)

]. (28)

Decomposition We decompose the variational bound on
I(Z;X) as in [8, 13].

Ep(x)p(z|x)[log
p(z|x)
r(z)

]

= Ep(x)p(z|x)[log
p(z|x)
p(z)

+
p(z)

r(z)
] (29)

= Ep(x)p(z|x)[log
p(z|x)
p(z)

] + Ep(z)[log
p(z)

r(z)
] (30)

= I(Z;X) +KL(p(z)||r(z)). (31)

Similarly, the variational bound on I(Z;X|Y ) can be de-
composed as follows

Ep(x,y)p(z|x)[log
p(z|x)
r(z|y)

]

= Ep(x,y)p(z|x)[log
p(z|x, y)
p(z|y)

+
p(z|y)
r(z|y)

] (32)

= Ep(x,y)p(z|x)[log
p(z|x, y)
p(z|y)

] + Ep(x,y)p(z|x)[log
p(z|y)
r(z|y)

]

(33)

= I(Z;X|Y ) +KL(p(z|y)||r(z|y)). (34)

Maximum Mean Discrepancy Regularizer Maximum
Mean Discrepancy (MMD) [4, 6, 10] is a measure of the di-
vergence of two distributions. Let k : X ×X 7→ R be a pos-
itive semi-definite kernel with a feature map ϕ : X 7→ H,
where X is domain andH is the corresponding reproducing
kernel Hilbert space (RKHS). The MMD of distributions p
and q are:

DMMD(p(x)||q(x)) = ||Ep(x)[ϕ(x)]− Eq(x)[ϕ(x)]||2H.
(35)

It is 0 when p = q and greater than 0 when p ̸= q. If we
set X = H = Rd and ϕ(x) = x, Eq. (35) is reduced to
||Ep(x)[x] − Eq(x)[x]||2, which is the regularizer function
in InfoGCN.

The regularizer LmMMD minimizes the divergence of the
distributions p(z) and r(x) using MMD. It does not reg-
ularize over the variance or shape of the distribution, but
the position of the mean to be adjusted to origin. From
the perspective of deep learning, regularizing the distribu-
tion center to the origin alleviates the factors that increase
the size of the bias parameters of the network. In addi-
tion, the regularizer LcmMMD minimizes the divergence of
the distributions p(x|z) and r(x|z) using MMD. Similar to
LmMMD, no regularization is performed on the variance or
shape of the conditional marginal distribution, while only
the positions of the means are regularized to be orthogonal
between the classes. The MMD losses (LmMMD, LcmMMD)
are expected to have a generalization effect on classification
through regularization along with classification loss that is
directly learned by maximizing the likelihood of q(y|z).



Notations Descriptions
X Input variable (sequence of skeleton)
Z Latent variableRandom variables
Y Target variable (action label)
β1 Lagrangian multiplier for IB objective in [1]Control parameters
λ1 and λ2 Control parameter of our objective
R(Z) Our objective
q(y|z) Variational classifier
r(z) Variational marginalVariational distributions
r(z|y) Variational class conditional marginal
D DatasetDatasets Dy class conditional Dataset
LCLS Classificiation loss
LmMMD Marginal-MMD loss
LcmMMD Conditional-marginal-MMD lossLosses

LTOTAL Total loss
V Vertices of skeleton graphGraph
E Edges of skeleton graph
C Skeleton feature dimension
T The number of total frameConstants
N The number of skeleton joint
X Joint feature
A Adjacency matrix
Â Normalized adjacency matrix
Ã (Learnable) shared topology
P Skeleton bone source-target relation matrix
D Diagonal degree matrix of A + I
H Joint representation

Variables and learnable parameters

W Learnable weight of SA-GC
z Latent vector of action
µ Mean of multi-variate Gaussian Distribution
Σ Diagonal covariance matrix of multi-variate Gaussian DistributionReparameterization parameters

ϵ Auxilary independent random noise
K The maximum number of hops from skeleton center of mass.
M The number of head in MSA
D Dimension of embedding blockHyper-parameters

D′ Dimension per head

Table 1. Summary of notations

B. Notations of InfoGCN

In Table 1, we present all notations that used to describe
InfoGCN in Sec 3.

C. Implementation Details

Code We provide the implementation code for InfoGCN
in a publically accessible repository github.com/
stnoah1/infogcn to reproduce the experimental re-
sults. The code includes instructions for data acquisition,
preprocessing, dependencies, and exact commands for the
experiments.

Model Architecture Table 3 shows the output size of
each block of InfoGCN. The number of joints N is 25 for
NTU RGB+D 60 [11] & 120 [11] and 20 for NW-UCLA
[16]. The number of action classes is 60 for NTU RGB+D
60 & 120 and 10 for NW-UCLA. To infer the latent vec-
tors, we adopt three fully connected (FC) layers. The first
FC layer transforms pooled aggregated features from en-
coding blocks to the vector of latent dimension. Then, the
MeanFC and CovFC layers output the mean and covari-
ance of the multivariate Gaussian distribution, which mod-
els conditional latent distribution.

github.com/stnoah1/infogcn
github.com/stnoah1/infogcn


Datasets K # Subject # Class # Joint (N ) Train / Test Split # Train # Test # Total
Northwestern-UCLA [16] 6 10 10 20 - 1,020 474 1,494
NTU RGB+D 60 [14] 8 40 60 25 Cross-Subject 40,091 16,487 56,578

8 40 60 25 Cross-View 37,646 18,932 56,578
NTU RGB+D 120 [11] 8 106 120 25 Cross-Subject 63,026 50,919 113,945

8 106 120 25 Cross-Setup 54,468 59,447 113,945

Table 2. Datasets summary.

Datasets In Table 2, we present metadata of datasets that
are used for the experiments, including the number of data
points and action classes of each dataset. We also provide
URLs and terms and conditions for the usage of datasets1.
One can obtain the datasets: NTU RGB+D 60 & 120 2 and
NW-UCLA 3. The terms and conditions of NTU RGB+D
60 & 120 provided by the authors are as follows

“Both ‘NTU RGB+D’ and ‘NTU RGB+D 120’
are released for academic research only, and are
free to researchers from educational, or research
institutes for non-commercial purposes. The use
of these two datasets is governed by the following
terms and conditions: Without the expressed per-
mission of the ROSE Lab, any of the following will
be considered illegal: redistribution, derivation
or generation of a new dataset from this dataset,
and commercial usage of any of these datasets
in any way or form, either partially or in its en-
tirety. For the sake of privacy, images of all sub-
jects in any of these datasets are only allowed for
demonstration in academic publications and pre-
sentations. All users of ‘NTU RGB+D’ and ‘NTU
RGB+D 120’ action recognition datasets agree to
indemnify, defend and hold harmless, the ROSE
Lab and its officers, employees, and agents, indi-
vidually and collectively, from any and all losses,
expenses, and damages.”

Preprocessing Protocol For NTU RGB+D 60 & 120
datasets, we adopt the preprocessing procedure of [17] and
align the spine of the skeletons based on the view-invariant
transformation [15], so that skeletons are perpendicular to
the ground. For the NW-UCLA dataset, we follow the meth-
ods presented in [2, 3].

Training We train the InfoGCN with 110 epochs and use
warm-up [7] for the early 5 epochs as in [2]. The learning
rate is initialized to 0.1 for NTU RGB+D 60 & 120 and 0.05
for NW-UCLA and decayed with a factor of 0.1 at 90 and

1We failed to get a license information of NW-UCLA online.
2https : / / rose1 . ntu . edu . sg / dataset /

actionRecognition/
3https://wangjiangb.github.io/my_data.html

Blocks Output Size
Input 64×N × 3

Encoder

Embedding Block 64×N × 64
Encoding Block 1 64×N × 64
Encoding Block 2 64×N × 64
Encoding Block 3 64×N × 64
Encoding Block 4 32×N × 128
Encoding Block 5 32×N × 128
Encoding Block 6 32×N × 128
Encoding Block 7 16×N × 256
Encoding Block 8 16×N × 256
Encoding Block 9 16×N × 256

Global Average Pooling 1× 1× 256
FC 256

MeanFC 256
CovFC 256

Latent Vector 256
Classifier # Action Class

Table 3. Shape of output tensor for each block of InfoGCN. The
output size of encoding and embedding blocks denote the number
of time frames × the number of joints × the embedding dimen-
sion.

100 epochs. For NTU RGB+D 60 & 120 datasets, we use
the weight decay of 5 × 10−4 and the loss coefficients of
λ1 = 1 × 10−4 and λ2 = 1 × 10−1. For the NW-UCLA
dataset, weight decay of 4×10−4 and the loss coefficients of
λ1 = 1×10−1 and λ2 = 1×10−1 are used. The batch size
is set up to be about twice the number of classes so that the
mini-batch can contain two data on average for each class;
32 for NW-UCLA, 128 for NTU RGB+D 60, and 256 for
NTU RGB+D 120.

D. Additional Experimental Results
D.1. Performance Plot of Previous SoTAs

Fig. 1 plots action classification accuracies of the pre-
vious methods and ours on three datasets. We note that
the performance gain of InfoGCN is considerable. (Perfor-
mance gains of ours versus average of the previous state-
of-the-art records on NTU120 X-sub: 0.9% vs 1.0% and
X-view: 0.6% vs 1.13% / NTU60 X-sub: 0.6% vs 0.5% /
NW-UCLA: 0.5% vs 1.6%).

https://rose1.ntu.edu.sg/dataset/actionRecognition/
https://rose1.ntu.edu.sg/dataset/actionRecognition/
https://wangjiangb.github.io/my_data.html


Figure 1. Leaderboard of skeleton based action recognition in re-
cent two years. We connect the previous state-of-the-art records
with lines, showing ours brings considerable gains over most
datasets. An approach-by-approach comparison clearly shows our
performance improvement.

D.2. Ablation Studies on NTU RGB+D 120

We provide additional ablation studies on NTU RGB+D
120 cross-subject split with joint information (k = K) as in
the main paper unless otherwise stated. Bold figures indi-
cate the best performance in all the tables in this section.

Effect of the Number of Heads In Table 4, we compare
the performance of InfoGCN with the different numbers of
heads (M ) along with the number of model parameters. We
observe that InfoGCN with three heads shows the best per-
formance compared to others. Despite the increase in model
capacity, models with more than three heads do not improve
the performance. The number of parameters of 3-headed
InfoGCN is 1.57M which is slightly larger (around 0.1M)
than previous state-of-the-art methods [2, 9, 12].

Composition Operations for the Context-Dependent
Topology. To explore the design of context-dependent
topology in the SA-GC module, we compare three differ-
ent composition operators (+ , ⊙, and ⊗) for combining
shared-topology with self-attention map in Table 5. Here,
⊗ denotes broadcasted matrix multiplication, and ⊙ in-
dicates broadcasted element-wise multiplication. We see
that element-wise multiplication achieves the highest per-
formance in terms of classification accuracy, and results
verify the effectiveness of the context-dependent topology
design.

Coefficients for MMD Losses We run a grid search over
the coefficients of loss in the range of λ1 ∈ {1× 10−5, 1×
10−4, 1×10−3, 1×10−2, 1×10−1} and λ2 ∈ {1×10−3, 1×
10−2, 1×10−1} as shown in Table 6. We see that coefficient
λ1 = 1 × 10−4 and λ2 = 1 × 10−1 gives the best perfor-
mance. We search the loss coefficients for the experiments
on other datasets in the same way.

M # Params Acc (%)
1 1.03M 84.8
2 1.30M 84.8
3 1.57M 85.1
4 1.85M 84.7
5 2.12M 84.8
6 2.39M 84.5

Table 4. Accuracies of the different numbers of head of InfoGCN.

Methods Acc (%)

Ã + SA(Ht) 84.7
Ã⊗ SA(Ht) 84.9
Ã⊙ SA(Ht) 85.1

Table 5. Accuracies of the different composition operations for
context-dependent topology.

λ2

1× 10−3 1× 10−2 1× 10−1

1× 10−5 84.9 84.8 84.9
1× 10−4 84.5 84.7 85.1
1× 10−3 84.9 84.6 84.8
1× 10−2 85.0 84.8 84.7

λ1

1× 10−1 84.7 84.6 84.6

Table 6. Accuracies of the different coefficients of MMD loss.

Acc (%)
k Pos. Mot.
1 (Bone) 87.3 82.5
2 86.5 82.2
3 85.3 82.2
4 84.4 81.8
5 84.7 82.2
6 84.7 81.9
7 84.6 82.0
8 (Joint) 85.1 82.1

Table 7. Accuracies of the different k-th mode representation of
skeleton on NTU RGB+D 120 cross-subject split.

Multi-modal Ensemble To examine the effect of the
multi-modal ensemble, we ensemble different sets of k-th
mode representations of the skeleton. We present the action
classification accuracy of each k-th mode representation in
Table 7 and their ensemble in Table 8. The k-set column
in Table 8 (and Tables 9 to 12) indicates a set of modalities
used for the ensemble. The Pos. and Mot. in the tables in-
dicates position and motion, respectively. The Pos. & Mot.
column in the tables represents the ensemble of position and
motion of skeleton joint features in the corresponding k-set.
In Table 7, we see that the model trained with bone infor-



Acc (%)Modes k-Set Pos. Mot. Pos.&Mot.
Bone {1} 87.3 82.5 88.9
Joint {K} 85.1 82.1 86.9
4 ensemble {1,K} 88.5 84.2 89.4
6 ensemble {1,2,K} 89.0 84.9 89.8
8 ensemble {1,2,3,K} 89.0 84.9 89.6
10 ensemble {1,2,3,4,K} 89.5 85.4 89.3
12 ensemble {1,2,3,4,5,K} 89.4 85.5 89.3
14 ensemble {1,2,3,4,5,6,K} 89.3 85.4 89.2
16 ensemble {1,2,3,4,5,6,7,K} 89.2 85.5 89.2

Table 8. Multi-modal ensemble results on NTU RGB+D 120 cross-subject split. K is equal to 8.

Acc (%)Modes k-Set Pos. Mot. Pos.&Mot.
Bone {1} 90.6 88.6 92.2
Joint {K} 89.8 88.9 91.2
4 ensemble {1,K} 91.6 90.1 92.7
6 ensemble {1,2,K} 92.2 90.6 93.0

Table 9. Multi-modal ensemble results on NTU RGB+D 60 cross-
subject split. K is equal to 8.

Acc (%)Modes k-Set Pos. Mot. Pos.&Mot.
Bone {1} 95.5 93.6 96.2
Joint {K} 95.2 94.2 96.4
4 ensemble {1,K} 96.5 95.0 96.9
6 ensmeble {1,2,K} 96.7 95.3 97.1

Table 10. Multi-modal ensemble results on NTU RGB+D 60
cross-view split. K is equal to 8.

mation achieves the best performance in both position and
motion. We also note that the performance of the model
trained with positions tends to decrease as the k value in-
creases except when k is equal to 8 (joint). However, the
performance of the model trained with the motion has sim-
ilar values over k with the range of [81.9, 82.2], while the
model trained with bone information (k = 1) shows the best
performance.

In Table 8, we further observe that the ensemble of mod-
els trained with different k-th mode representations im-
proves the classification accuracy, but after ensembling 6
modes, the accuracy decreases as the number of modalities
increases. We attribute this to the fact that the k-th mode
closed to K such as k = 7 or 8 does not provide distinc-
tive features for classifying action. Therefore, the more we
ensemble models trained with the k-th mode close to K,
the greater the influence of the model trained with the K-
th mode. Therefore, classification accuracy decreases after
ensembling 6 modes, converging to the performance of the
model with K-th mode.

Acc (%)Modes k-Set Pos. Mot. Pos.&Mot.
Bone {1} 88.5 84.8 90.1
Joint {K} 86.3 84.4 88.4
4 ensemble {1,K} 89.7 86.5 90.7
6 ensemble {1,2,K} 90.3 86.9 91.2

Table 11. Multi-modal ensemble results on NTU RGB+D 120
cross-setup split. K is equal to 8.

Acc (%)Modes k-Set Pos. Mot. Pos.&Mot.
Bone {1} 95.3 95.5 94.8
Joint {K} 94.0 93.1 94.6
4 ensemble {1,K} 96.3 95.7 96.6
6 ensemble {1,2,K} 97.0 95.5 97.0

Table 12. Multi-modal ensemble results on NW-UCLA. K is
equal to 6.

D.3. Multi-modal Ensemble on All Benchmarks

We provide extensive experimental results of the multi-
modal ensemble of each dataset and split in Tables 8 to 12.
The value K, which denotes joint information in k-th mode
skeleton representation, is 8 for NTU RGB+D 60 & 120 and
6 for NW-UCLA. We note that the performance increases as
the number of modalities for ensemble increases in all the
datasets.

D.4. Further Analysis on Information Bottleneck
Constraint

To illustrate the effectiveness of the information bottle-
neck objective and its corresponding loss, we provide addi-
tional cases of PCA analysis conducted on Sec. 5.1. We
trained our model with or without MMD loss and com-
pared latent representations of different classes using PCA
as shown in Fig. 2. In detail, we randomly sampled five
action classes for visual simplicity from NTU RGB+D 120
dataset and repeated this process for 12 times. We observe
a similar tendency in Fig. 2 as in Fig. 4. The latent rep-



Figure 2. Various examples of PCA projection of latent represen-
tation to 2D when trained with or without MMD loss. We assign
different colors for different action classes.

resentation learned with MMD loss shows less overlapping
class conditional distributions that seem easier to discrimi-
nate than those without MMD loss.

D.5. Qualitative Results

To observe the patterns of how a joint attend others or
to be attended, we illustrate examples of the skeleton and
its corresponding topology inferred by InfoGCN in Figs. 3
to 7. Colored lines indicate inferred topology from a se-
lected joint to all the other joints. The thickness of the col-
ored lines and the size of circles on joints are proportional
to the strength of the inferred relation as in the main pa-
per. For convenience sake, we refer to the attention values
of joint attending others as out-attention and those of other
joints toward a joint as in-attention. The out-attention corre-
sponds to rows of the self-attention map and the in-attention
to columns.

In Fig. 3, we show minimal examples to compare four
factors: in/out-attention, joint, time, and action class. We
can see that the in-attention and out-attention differ for
given time, action, and joint. As we observed from the self-
attention maps in the main paper, the inferred topology has

Figure 3. Examples of inferred context-dependent topology in dif-
ferent joints, times, and action classes. We visualize in-attention
and out-attention separately.

asymmetric relation, unlike bone connectivity. The joint re-
lations of inferred topology are varied depending on the di-
rection. On the other hand, the attention patterns are similar
when we compare the attention for different joints in the
same in/out type, action, and time, but the average intensity
differs.

To see the patterns adhere across joints, actions, and
times, we present skeleton and inferred topology for differ-
ent types of attention, joints, time frames, and action classes
in Figs. 4 to 7. We choose representative joints (limps, head,
the center of mass) and randomly select 24 different action
classes from the test set on NTU RGB+D 120 dataset cross-
subject split. We uniformly sample frames of each sequence
of skeletons every 16 timesteps. The following is a list of
the characteristics of the graph inferred by InfoGCN that we
observe.

• The graph has asymmetric relations so that two different
joints can have various relations depending on the direc-
tion.

• The in-attentions or out-attentions of the graph in specific
time and action tend to be similar against entire joints.

• Graphs are dynamically inferred over time while depen-
dent on the action, which helps recognize human behavior
using the discriminative information provided by SA-GC.



Figure 4. Illustrations of context-dependent intrinsic topology (1/4)



Figure 5. Illustrations of context-dependent intrinsic topology (2/4)



Figure 6. Illustrations of context-dependent intrinsic topology (3/4)



Figure 7. Illustrations of context-dependent intrinsic topology (4/4)
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