
Channel Balancing for Accurate Quantization of Winograd Convolutions
Supplementary Material

Vladimir Chikin
Huawei Noah’s Ark Lab

vladimir.chikin@huawei.com

Vladimir Kryzhanovskiy
Huawei Noah’s Ark Lab

kryzhanovskiy.vladimir@huawei.com

A. Winograd transformation matrices

In the paper we presented the Balanced Quantized Wino-
grad formula by parts to simplify the discussion. The for-
mula for the most complex case, i.e., the tile-wise quantiza-
tion scales sv ∈ Ra×a and su ∈ Ra×a, has the following
form:

Yf = AT

∑C
c Ṽc � Ũfc

su � sv
A, (A.1)

where

Ṽc = bBTXcB� (sv � 1
Ωc

) e (A.2)

and

Ũfc = bGWfcG
T � (su �Ωc) e. (A.3)

Here� is the element-wise Hadamard product. Xc ∈ Ra×a

is the c-th channel of a sub-tensor, obtained by sliding a
window of the size a × a with stride m over the feature
map. Hereinafter a = m+k−1 (k ≡ 3) and c = 1, 2, ..., C
(C (capital letter) is the number of channels of the feature
map); B ∈ Ra×a, G ∈ Ra×k, and A ∈ Ra×m are data,
weights, and inverse transformation matrices respectively
(see their definitions below); Ωc ∈ Ra×a is the balancing
matrix (sv� 1

Ωc
means that the matrix sv is divided element-

wise by the matrix Ωc); Ṽc, Ũfc ∈ Za×a are an integer
matrices, obtained by applying quantization operator b·e:

bZ · se = Clip
(
Round

(
Z · s

)
,−n,+n

)
, (A.4)

using quantization scales sv and su, n = 2b−1 − 1, b is the
quantization bitwidth. Finally, f = 1, 2, ..., F denotes the
filter number.

Winograd convolution algorithms can be constructed us-
ing Lagrange interpolation, and therefore their specific im-
plementations depend on the choice of interpolation param-
eters, see [2] or [3]. In our paper, we use the best-known
versions of the Winograd algorithm introduced in [2]. For
F(4, 3) (m = 4, a = 6) Winograd algorithm, the Winograd

transformation matrices are:

BT =


4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

 (A.5)

G =



1
4 0 0
− 1

6 − 1
6 − 1

6
− 1

6
1
6 − 1

6
1
24

1
12

1
6

1
24 − 1

12
1
6

0 0 1

 (A.6)

AT =


1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

 (A.7)

For F(6, 3) (m = 6, a = 8) Winograd algorithm, the
Winograd transformation matrices have the following form,
see [1]:

BT =



1 0 − 21
4

0 21
4

0 −1 0
0 1 1 − 17

4
− 17

4
1 1 0

0 −1 1 17
4

− 17
4

−1 1 0
0 1

2
1
4

− 5
2

− 5
4

2 1 0
0 − 1

2
1
4

5
2

− 5
4

−2 1 0
0 2 4 − 5

2
−5 1

2
1 0

0 −2 4 5
2

−5 − 1
2

1 0
0 −1 0 21

4
0 − 21

4
0 1



(A.8)

G =



1 0 0
− 2

9 − 2
9 − 2

9
− 2

9
2
9 − 2

9
1
90

1
45

2
45

1
90 − 1

45
2
45

32
45

16
45

8
45

32
45 − 16

45
8
45

0 0 1


(A.9)

1



Table A.1. QAT of ResNet-20 with Winograd convolutions on the CIFAR-10 dataset: the employed set of learning rate schedules.

Number of LR schedule Learning Rate Schedule

1 From beginning: LR = 10−5.
2 From beginning: LR = 10−4, from 50 epoch: LR = 10−5.
3 From beginning: LR = 10−3, from 50 epoch: LR = 10−4.
4 From beginning: LR = 10−2, from 100 epoch: LR = 10−3.
5 From beginning: LR = 10−2, from 100 epoch: LR = 10−3, from 200 epoch: LR = 10−4.

Table A.2. Inference time for F (4, 3) Winograd algorithm, H = W = 128, 8-bit quantization. Measured on CPU: Intel(R) Core(TM)
i7-7700 CPU @ 4.10GHz, one thread.

F=C Static, ms Dynamic, ms
QW BQW Overhead BQW fused QW BQW Overhead Overhead (theory)

8 34 35 4.5% 34 41 43 4.7% 2.4%
16 71 75 5.0% 71 83 87 4.7% 2.3%
32 163 169 3.7% 163 182 190 4.0% 2.0%
64 393 408 3.8% 393 441 456 3.4% 1.6%
128 1066 1093 2.5% 1070 1187 1209 1.8% 1.0%
256 3199 3256 1.8% 3209 3475 3516 1.2% 0.5%
512 10733 10803 0.6% 10734 11216 11328 1.0% 0.2%

AT =


1 1 1 1 1 1 1 0
0 1 −1 2 −2 1

2 − 1
2 0

0 1 1 4 4 1
4

1
4 0

0 1 −1 8 −8 1
8 − 1

8 0
0 1 1 16 16 1

16
1
16 0

0 1 −1 32 −32 1
32 − 1

32 1

 (A.10)

B. Training configurations for Winograd QAT
We train ResNet-20 on the CIFAR-10 dataset with quan-

tized Winograd convolutions using the SGD optimizer with
a momentum of 0.9 and weight decay of 10−6. In all our ex-
periments, the batch size is 100. We train the models using
several different learning rate schedules for 300 epochs for
each considered Winograd algorithm and bitwidth, for both
balanced quantized Winograd (BQW) convolutions and tra-
ditional quantized Winograd (QW) convolutions. These
learning rate schedules are listed in Tab. A.1. We consider
schedules, in which learning rates of various orders gradu-
ally decrease during training. For both BQW and traditional
QW, we provide the best result obtained in several training
runs using the learning rate schedules from Tab. A.1.

In all experiments, we use 100 batches from the training
dataset to calibrate the balancing coefficients, as well as to
estimate the quantization parameters of the layer inputs of
the Winograd convolutions. We use such a sufficiently large
amount of data in order to make the experimental results be

less dependent on the data used for initialization of balanc-
ing coefficients and input quantization parameters. How-
ever, in practice a much smaller amount of data could be
utilised to initialize high-quality balanced quantized Wino-
grad convolutions.

C. Inference time measurements
We implemented BQW and QW convolutions in C lan-

guage and measured their inference time for the case of 8-
bit quantization (see Tab. A.2). Unfortunately, we did not
have opportunity to make low-level optimizations (such as
vectorization by intrinsic function, using Assembler, etc.).
The real overhead strongly depends on efficiency of the
implementation. Nevertheless, the inference time ratio be-
tween BQW and QW demonstrates the overhead nature of
the channel balancing operation. Fig. C.1 shows the ex-
perimental and theory overheads for the case of dynamic
quantization. We observe that the curves related to theory
and experiments have a similar behavior. The findings of
the paper are confirmed by the real inference time measure-
ments:

1. For both static and dynamic quantization the overhead
of the channel balancing is small and decreases with
the increasing number of filters and channels. Please
see the “Overhead” columns, which demonstrate the
relative increase of the BQW inference time relative to
the QW inference time: overhead = BQW/QW −1.

2. In the case of static quantization, the balancing coeffi-



Figure C.1. The overhead of the channel balancing operation for the case of dynamic quantization. Data were taken from Tab. A.2.

cients can be fused into the quantization scale. Hence,
the overhead becomes close to zero (compare “BQW”
and “BQW fused” columns).

References
[1] Andrew Lavin. Wincnn. https://github.com/

andravin/wincnn, 2020. 1
[2] Andrew Lavin and Scott Gray. Fast algorithms for convo-

lutional neural networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4013–
4021, 2016. 1

[3] Lingchuan Meng and John Brothers. Efficient wino-
grad convolution via integer arithmetic. arXiv preprint
arXiv:1901.01965, 2019. 1

https://github.com/andravin/wincnn
https://github.com/andravin/wincnn

	. Winograd transformation matrices
	. Training configurations for Winograd QAT
	. Inference time measurements

