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Supplementary Materials

This document supplements the main paper with the fol-
lowing.

1. Results demonstrating the insufficiency of LST for
photorealistic style transfer (supplements Section 2 of
the main paper).

2. Derivation of the equivalence of Equations 3 and 4 in
the main paper.

3. Derivation of the loss objective in Equation 6 in the
main paper.

4. Channel length selection for Ours-Mob model distilled
from MobileNet (supplements Section 3.3 in the main
paper).

5. Results demonstrating that high-frequency residuals
improve the high-frequency detail construction of Pho-
toWCT and the original CKD-distilled model (supple-
ments Section 4 of the main paper).

6. Inference time of different models on the CPU (sup-
plements Section 4.2 of the main paper).

7. Demonstration that CKD does not improve perfor-
mance when implemented using our PCA-derived
channel lengths instead of the empirical ones (supple-
ments Section 4.3 of the main paper).

8. Qualitative results to supplement those in Section 4.3
of the main paper.

9. Results demonstrating that global eigenbases reflect
style better than local eigenbases (supplements Section
4.3 of the main paper).

10. Results of stylized images for 4K+ resolutions from
our PCA-distilled models (supplements Section 4.3 of
the main paper).

Figure 1. Content and style losses resulting from different models.
This figure extends the Figure 5(a) in the main paper. Four newly
added points are for LST [3], PhotoWCT [4], CKD-original [6],
and CKD-Ours.

Insufficiency of LST for photorealistic style
transfer

In the Section 2 of the main paper, we mention LST [3],
an autoencoder-based model for artistic style transfer, is
claimed to be capable of photorealistic style transfer. How-
ever, it does not provide any quantitative analysis for that
assertion. Here we show LST is not sufficient for photo-
realistic style transfer by providing both quantitative and
qualitative results.

First, we observe in Fig. 1 that LST results in a content
loss and a style loss both worse than those of CKD, which
has the worst performance of all methods considered in the
main paper. Qualitative results in Fig. 2 also show that com-
pared to the results from our models, the results from LST
are prone to blurred boundaries (low sharpness) and dull-
ness (low contrast).
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Figure 2. Comparison of the qualitative results from LST [3] and our PCA-distilled models. Compared to the results from our models, the
results from LST are prone to blurred boundaries (low sharpness) and dullness (low contrast).



Derivation of the equivalence of Equations 3
and 4 in the main paper

In order to solve Equation 3 in the main paper with mini-
batch gradient descent, we avoid the unstable minimiza-
tion process due to the unbounded trace function by rewrit-
ing Equation 3 as Equation 4 where the objective is lower-
bounded. Here we prove the equivalence of them (the fol-
lowing two equations).

  \max _{\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}=\mathbbm {1}} \frac {1}{M} \sum _{k=1}^M \mathrm {tr}(\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T}), 
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and

  \min _{\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}=\mathbbm {1}}\frac {1}{M} \sum _{k=1}^M ||\mathbf {W}_{N,g}^\mathrm {T}\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k} - \mathbf {\bar {F}}_{N,k}||^2_2. 














   (2)

  \small &\min _{\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}=\mathbbm {1}}\frac {1}{M} \sum _{k=1}^M ||\mathbf {W}_{N,g}^\mathrm {T}\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k} - \mathbf {\bar {F}}_{N,k}||^2_2 \\ = & \min _{\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}=\mathbbm {1}}\frac {1}{M} \sum _{k=1}^M \text {tr}\big [ \begin {aligned} &(\mathbf {W}_{N,g}^\mathrm {T}\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k} - \mathbf {\bar {F}}_{N,k}) \\ \cdot &(\mathbf {W}_{N,g}^\mathrm {T}\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k} - \mathbf {\bar {F}}_{N,k})^\mathrm {T} \end {aligned} \big ] \\ = & \min _{\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}=\mathbbm {1}}\frac {1}{M} \sum _{k=1}^M \text {tr}\Bigg [ \begin {aligned} &\mathbf {W}_{N,g}^\mathrm {T}\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T}\mathbf {W}_{N,g} \\ - &\mathbf {W}_{N,g}^\mathrm {T}\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T} \\ - &\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T}\mathbf {W}_{N,g} \\ +&\cancel {\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}} \end {aligned} \Bigg ].
















 



















 




 


















































(5)

The last term F̄N,kF̄
T
N,k is crossed out without affecting

the optimization result. By using the identity that tr[AB]
= tr[BA] for any two multiplicable matrices A and B, the
objective can be further simplified as follows:

  \small & \min _{\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}=\mathbbm {1}}\frac {1}{M} \sum _{k=1}^M \text {tr}\Bigg [ \begin {aligned} &\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T}\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T} \\ - &\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T} \\ - &\mathbf {W}_{N,g} \mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T} \end {aligned} \Bigg ] \\ = & \min _{\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}=\mathbbm {1}}\frac {1}{M} \sum _{k=1}^M \text {tr}\Bigg [ \begin {aligned} &\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T}\mathbbm {1} \\ - &2\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T} \end {aligned} \Bigg ] \\ = & \min _{\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}=\mathbbm {1}}\frac {1}{M} \sum _{k=1}^M \text {tr}[- \mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T} ] \\ = & \max _{\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}=\mathbbm {1}}\frac {1}{M} \sum _{k=1}^M \text {tr}[ \mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T} ].



























































































































 (9)

■

Derivation of the loss objective in Equation 6
in the main paper

In the encoder distillation introduced in Section 3.2 in
the main paper, we find using the feature reconstruction loss
in Eq. (10) for encoder distillation results in a better conver-
gence than directly taking ||F̄e

N,k − WN,gF̄N,k||22 as the
loss function.

  \mathcal {L}_{enc}^N(I_k) = ||\mathbf {W}_{N,g}^\mathrm {T}\mathbf {\bar {F}}_{N,k}^e - \mathbf {\bar {F}}_{N,k}||^2_2. \label {eq:distillation_loss_supp} 
 



   (10)

Here we show the equivalence of Eq. (10) and ||F̄e
N,k −

WN,gF̄N,k||22 as the loss function.

Proof. First,

  &\min _{\mathbf {\bar {F}}_{N,k}^e}||\mathbf {\bar {F}}_{N,k}^e-\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}||^2_2 \\ =& \min _{\mathbf {\bar {F}}_{N,k}^e} \text {tr}\big [(\mathbf {\bar {F}}_{N,k}^e-\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k})(\mathbf {\bar {F}}_{N,k}^e-\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k})^\mathrm {T}\big ] \\ =& \min _{\mathbf {\bar {F}}_{N,k}^e} \text {tr}\Bigg [ \begin {aligned} &\mathbf {\bar {F}}_{N,k}^e(\mathbf {\bar {F}}_{N,k}^e)^\mathrm {T} + \cancel { \mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T}} \\ -&\mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}(\mathbf {\bar {F}}_{N,k}^e)^\mathrm {T} - \mathbf {\bar {F}}_{N,k}^e\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T} \end {aligned} \Bigg ] \label {eq:direct_equiv},





























































 











(13)

where the term WN,gF̄N,kF̄
T
N,kW

T
N,g can be crossed out

since it does not contain the variable F̄e
N,k we optimize for.

Second,

  &\min _{\mathbf {\bar {F}}_{N,k}^e}||\mathbf {W}_{N,g}^\mathrm {T}\mathbf {\bar {F}}_{N,k}^e - \mathbf {\bar {F}}_{N,k}||^2_2 \\ = & \min _{\mathbf {\bar {F}}_{N,k}^e}\text {tr}\big [(\mathbf {W}_{N,g}^\mathrm {T}\mathbf {\bar {F}}_{N,k}^e - \mathbf {\bar {F}}_{N,k})(\mathbf {W}_{N,g}^\mathrm {T}\mathbf {\bar {F}}_{N,k}^e - \mathbf {\bar {F}}_{N,k})^\mathrm {T}\big ] \\ = & \min _{\mathbf {\bar {F}}_{N,k}^e}\text {tr}\Bigg [ \begin {aligned} &\mathbf {W}_{N,g}^\mathrm {T}\mathbf {\bar {F}}_{N,k}^e(\mathbf {\bar {F}}_{N,k}^e)^\mathrm {T}\mathbf {W}_{N,g} + \cancel {\mathbf {\bar {F}}_{N,k}\mathbf {\bar {F}}_{N,k}^\mathrm {T}} \\ -&\mathbf {W}_{N,g}^\mathrm {T}\mathbf {\bar {F}}_{N,k}^e\mathbf {\bar {F}}_{N,k}^\mathrm {T} - \mathbf {\bar {F}}_{N,k}(\mathbf {\bar {F}}_{N,k}^e)^\mathrm {T}\mathbf {W}_{N,g} \end {aligned} \Bigg ]








  












 





 


































 







(16)

By using the identity that tr[AB] = tr[BA] for any two mul-
tiplicable matrices A and B, the objective can be further
simplified as follows:

  \min _{\mathbf {\bar {F}}_{N,k}^e}\text {tr}\Bigg [ \begin {aligned} &\mathbf {\bar {F}}_{N,k}^e(\mathbf {\bar {F}}_{N,k}^e)^\mathrm {T}\cancel {\mathbf {W}_{N,g}\mathbf {W}_{N,g}^\mathrm {T}} \\ -&\mathbf {\bar {F}}_{N,k}^e\mathbf {\bar {F}}_{N,k}^\mathrm {T}\mathbf {W}_{N,g}^\mathrm {T} - \mathbf {W}_{N,g}\mathbf {\bar {F}}_{N,k}(\mathbf {\bar {F}}_{N,k}^e)^\mathrm {T} \end {aligned} \Bigg ], \label {eq:rewrite_equiv} 




































 (17)

where WN,gW
T
N,g is crossed out since it is an iden-

tity matrix. Since the equality of Eq. (13) and
Eq. (17), we prove the equivalence of these two opti-
mization problems minF̄e

N,k
||F̄e

N,k − WN,gF̄N,k||22 and

minF̄e
N,k

||WT
N,gF̄

e
N,k − F̄N,k||22. ■



Figure 3. Mean explained variance (green histogram) and mean cumulative explained variance (blue curve) of the conv dw relu features and
the conv 1 relu feature of MS-COCO images from MobileNet [2]. It is observed that on average 85% of the variance of a conv dw 6 relu,
conv dw 4 relu, conv dw 2 relu, or conv 1 relu feature can be explained by 54, 37, 19, or 3 eigenvectors of the feauture covariance,
respectively.

Channel length selection for Ours-Mob model
distilled from MobileNet

To demonstrate the generalizability of our PCA knowl-
edge distillation, we apply it to distill style information
from MobileNet [2]. By following how we select the lay-
ers from VGG-19 [5] for style representation: we select
the layer right after each downsampling layer for four lay-
ers in total, we select the conv dw 6 relu, conv dw 4 relu,
conv dw 2 relu, and conv 1 relu layers from MobileNet for
style representation.

We follow the same procedure as described in Section
4.1 in the main paper to distill style information from the
selected layers to a smaller model which we call Ours-Mob
in the main paper. We plot mCEV and mEV for each
selected layer in Fig. 3. It is observed that on average
85% of the variance of a conv dw 6 relu, conv dw 4 relu,
conv dw 2 relu, or conv 1 relu feature can be explained by
54, 37, 19, or 3 eigenvectors of the feauture covariance, re-
spectively. However, we find that if Ce

1 is set to 3, it prevents
the distillation from the conv dw 2 relu layer if Ce

2 is set to
19. We fix this issue by following the value of Ce

1 we use
in Ours-VGG. In the end, we set four channel lengths (Ce

1 ,
Ce

2 , Ce
3 , Ce

4 ) to be (10, 19, 37, 54), resulting in Ours-Mob
model.

High-frequency residuals improve the high-
frequency detail construction of PhotoWCT
and the original CKD-distilled model

Recall in the Section 2 in the paper that we mentioned
PhotoWCT [4] is poor at preserving content due to two
reasons: too strong stylization strength that introduces arti-
facts and the lossy architecture that does not hold the high-
frequency detail well. To consider stylization strength as
the main factor that affect the content preservation, we fix
the lossy architecture by introducing high-frequency resid-
uals [1] (HFR) to PhotoWCT. The resulting model which
we call PhotoWCT-HFR reduces the content loss of Pho-
toWCT by 17.7% (Fig. 1). The better content preservation

of PhotoWCT-HFR is due to its better high-frequency con-
struction as exemplified in Fig. 4.

Similarly, the original model distilled with CKD [6]
(which we call CKD-original) is for artistic style transfer
and also poor at constructing high-frequency details. To
have a fair comparison, we again introduce HFR to our
CKD-distilled model. The resulting model which we call
CKD in the main paper reduces the content loss of CKD-
original by 25.2% (Fig. 1). The better content preservation
of CKD is due to its better high-frequency construction as
exemplified in Fig. 4.

Demonstration that CKD does not improve
performance when implemented using our
PCA-derived channel lengths instead of the
empirical ones

Unlike our PCA distillation, which has clear guidelines
for channel length selection, the previous method CKD [6]
empirically sets the channel lengths to be (Ce

1 = 16, Ce
2 =

32, Ce
3 = 64, Ce

4 = 128) when distilling from VGG-19 and
results in the CKD model. We show here that the model
distilled with CKD using our smaller channel lengths (Ce

1 =
10, Ce

2 = 20, Ce
3 = 58, Ce

4 = 64), which we call CKD-
Ours, does not change the performance of CKD as shown
in Fig. 1. Qualitatively, as shown in Fig. 5, we observe that
both CKD and CKD-Ours produce lots of artifacts in the
synthesized images, and our models consistently result in
more photorealistic images than both CKD-distlled models.



Figure 4. High-frequency residuals (HFR) [1] improve the content preservation of PhotoWCT [4] and CKD-original [6] by reinforcing the
high-frequency detail construction.



Figure 5. Qualitative comparison between our models, CKD and CKD-Ours. We observe that CKD and CKD-Ours produce very similar
results with lots of artifacts, and our models consistently result in more photorealistic images than both CKD-distlled models.



Inference time of different models on the CPU
we report in Tab. 1 models’ inference times on an Intel

Xeon W-2195 CPU @ 2.30GHz with workstation memory
of 256GB. The results have a similar trend to those in Ta-
ble 1 in the main paper: our distilled models achieve the
fastest inference time. Moreover, while the non-distilled
models spend 1-2+ minutes rendering an 8K image with
CPUs, our models require considerably less time; i.e., 10
seconds/image.

Model HD FHD QHD 4K 5K 8K

WCT2 5.92 18.04 31.61 71.28 109.13 X
PhotoWCT-HFR 4.91 10.31 18.06 38.44 69.22 149.22
PhotoWCT2 2.33 5.06 9.08 20.39 36.15 79.74
CKD 1.04 2.20 3.80 8.03 14.66 34.16
Ours-VGG-CKD 0.47 0.96 1.68 3.60 6.51 14.21
Ours-VGG 0.40 0.77 1.44 2.88 4.84 10.78
Ours-Mob 0.21 0.37 0.76 1.62 2.76 6.02

Table 1. Inference time (s/img) of different models on CPU. The
naming follows the main paper. X: segmentation fault (We found
this is not due to the common reason of insufficient memory or
system stack size. The reason remains unknown).

More stylized images from the PST dataset
We show several qualitative results from the PST

dataset [7] in Figure 5 in the main paper. Here we show
more of them in Fig. 7.

Global eigenbases reflect style better than local
eigenbases

In Section 3 of the main paper, we explain the limita-
tion of local eigenbases to faithfully reflect the style of style
images. To overcome this, we propose using global eigen-
bases. The quantitative result (Fig. 1) justifies this limitation
and our strategy. We show in Fig. 6 some qualitative results
comparing the impact of global and local eigenbases.

Results of stylized images for 4K+ resolutions
from our PCA-distilled models

Since images of large resolutions (e.g. 4K and beyond)
contain more high-frequency details, which are hotbeds for
artifacts to form in stylization, the ability to reduce artifacts
of a photorealistic style transfer model can be better mani-
fested in the stylization of images of 4K+ resolutions. We
show such results from our PCA-distilled models in Fig. 8,
Fig. 9, Fig. 10, and Fig. 11. We notice that Ours-VGG,
which uses the channel lengths derived with PCA, con-
stantly preserve better content than Ours-VGG-CKD, which

uses the channel lengths empirically selected in the CKD
paper [6], by trimming off the slight artifacts. We also no-
tice that while Ours-Mob results in a slightly lower content
loss than Ours-VGG in the stylization of images of lower
resolutions (images in PST dataset [7]) as shown in Fig. 1,
Ours-VGG produces fewer artifacts than Ours-Mob in the
stylization of our 4K+ images.



Figure 6. PCA distillation with global eigenbases reflects better style than local eigenbases.



Figure 7. More stylized images from the PST dataset [7]. This figure expands the Figure 5 in the main paper.



Figure 8. Stylized images of 4K+ resolutions resulting from our models. Several artifacts are pointed out with the red arrows. (Part 1/4)



Figure 9. Stylized images of 4K+ resolutions resulting from our models. Several artifacts are pointed out with the red arrows. (Part 2/4)



Figure 10. Stylized images of 4K+ resolutions resulting from our models. Several artifacts are pointed out with the red arrows. (Part 3/4)



Figure 11. Stylized images of 4K+ resolutions resulting from our models. Several artifacts are pointed out with the red arrows. (Part 4/4)
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