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This supplementary material provides method details
(Section A), implementation details (Section B), qualitative
evaluations (Section C), an application of this task (Sec-
tion D), computational evaluations (Section E) and a lim-
itation (Section F), which could not be included in the main
paper due to the limited space.

A. Method Details

Transformer architectures in our CoFormer consist of
common building blocks, encoder and decoder. The main
components of these building blocks are attention layers.
Section A.1 provides more details of the attention layers.

In Section 3.5 of the main paper, the losses to train our
model are described: verb classification loss, noun classifi-
cation losses, box existence prediction loss, and box regres-
sion losses. Section A.2 provides more details of the losses.

A.1. Attention Layer

Multi-Head Attention. The input of the multi-head atten-
tion layer is the sequence of query, key and value. The
query sequence is denoted by Q ∈ RLQ×d, where LQ is
the sequence length and d is the size of the hidden dimen-
sion. The key sequence is denoted by K ∈ RLKV ×d and
value sequence is denoted by V ∈ RLKV ×d, where LKV is
the sequence length. In the multi-head attention layer, we
employ H attention heads; the hidden dimension of each
attention head is dh = d/H . For each attention head i,
Q, K and V are linearly projected via parameter matrices
WQ

i ,W
K
i ,W

V
i ∈ Rd×dh . In details,

Qi = QWQ
i ∈ RLQ×dh , (A.1)

Ki = KWK
i ∈ RLKV ×dh , (A.2)

Vi = VWV
i ∈ RLKV ×dh . (A.3)

The output of each attention head i is obtained by a
weighted summation of the value Vi, where the weights are
computed by the scaled dot-product between the query Qi

and the key Ki followed by a softmax function. In details,

Attention(Qi,Ki,Vi) = Softmax(
QiK

T
i√

dh
)Vi. (A.4)

The output of each attention head i is concatenated along
hidden dimension, then linearly projected via a parameter
matrix WO ∈ Rd×d. In details,

MultiHead(Q,K,V) = [Head1; ...; HeadH ]WO, (A.5)

where [; ] is a concatenation along hidden dimension and
Headi = Attention(Qi,Ki,Vi) for i = 1, ...,H .
Multi-Head Cross-Attention. This is the multi-head atten-
tion layer where the key sequence K is same with the value
sequence V, but the query sequence Q is different.
Multi-Head Self-Attention. This is the multi-head atten-
tion layer where the query sequence Q, key sequence K,
and value sequence V are same, i.e., Q = K = V.

A.2. Loss

Figure A1 shows the losses to train CoFormer. The verb
classification loss is denoted by LVerb. The noun classi-
fication loss from the classifier involved in the decoder of
Gaze-S1 transformer is denoted by L1

Noun, the loss from the
classifier involved in the encoder of Gaze-S1 transformer is
denoted by L2

Noun, and the loss from the classifier involved
in the decoder of Gaze-S2 transformer is denoted by L3

Noun.
The box existence prediction loss is denoted by LBoxExist.
The L1 box regression loss is denoted by LL1. The GIoU
box regression loss is denoted by LGIoU.

The total training loss is the linear combination of
LVerb,L1

Noun,L2
Noun,L3

Noun,LBoxExist,LL1, and LGIoU.
In this total loss, the loss coefficients are as follows:
λVerb, λ

1
Noun, λ

2
Noun, λ

3
Noun, λBoxExist, λL1, λGIoU > 0.

B. Implementation Details
In Section 4.2 of the main paper, some implementation

details are described. For completeness, we describe more
architecture details (Section B.1), loss details (Section B.2),
augmentation details (Section B.3), and training details
(Section B.4) of our CoFormer.
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Figure A1. Transformer architectures in CoFormer including the losses to train our model. The losses for training our CoFormer are as
follows: LVerb,L1

Noun,L2
Noun,L3

Noun,LBoxExist,LL1,LGIoU.

B.1. Architecture Details

Following previous work [1, 7], we use ResNet-50 [4]
pretrained on ImageNet [2] as a CNN backbone. Given an
image, the CNN backbone produces image features of size
h × w × c, where h,w = 22 and c = 2048. A 1 × 1 con-
volution followed by a flatten operation produces flattened
image features XF ∈ Rhw×d, where d = 512. To retain
spatial information, we employ positional encodings. We
use learnable 2D embeddings for the positional encodings.

We initialize encoders and decoders using Xavier Initial-
ization [3], and these modules are trained with the dropout
rate of 0.15. The number of heads in the attention layers of
these modules is 8. Each of feed forward networks in these
modules is 2-fully connected layers with a ReLU activation
function, whose hidden dimensions are 4d and dropout rate
is 0.15. These modules take learnable tokens, and each em-
bedding dimension of the tokens is d.

The verb classifier FFNVerb is 2-fully connected layers
with a ReLU activation function, whose hidden dimensions
are 2d and dropout rate is 0.3. Each of the two noun classi-
fiers placed on top of Gaze-S1 transformer is a linear layer.
The noun classifier FFNNoun is 2-fully connected layers
with a ReLU activation function, whose hidden dimensions
are 2d and dropout rate is 0.3. The bounding box estimator
FFNBox is 3-fully connected layers with two ReLU activa-
tion functions, whose hidden dimensions are 2d and dropout
rate is 0.2. The box existence predictor FFNBoxExist is
2-fully connected layers with a ReLU activation function,
whose hidden dimensions are 2d and dropout rate is 0.2.

B.2. Loss Details

Complete Details of Noun Losses. In the SWiG dataset,
each image is associated with three noun annotations given
by three different annotators for each role. For the noun
classification losses L1

Noun, L2
Noun, L3

Noun, each noun loss
is obtained by the summation of three classification losses
corresponding to three different annotators.

Regularization. We employ label smoothing regulariza-
tion [8] in the loss computation for verb classification loss
LVerb and noun classification losses L1

Noun, L2
Noun, L3

Noun.
In details, the label smoothing factor in the computation of
verb classification loss is 0.3, and the factor in the compu-
tation of noun classification losses is 0.2.

Loss Coefficients. Total loss to train CoFormer is a linear
combination of losses. In our implementation, the loss co-
efficients are λVerb = λ3Noun = 1, λ1Noun = λ2Noun = 2,
and λBoxExist = λL1 = λGIoU = 5.

B.3. Augmentation Details

For data augmentation, we employ random scaling, ran-
dom horizontal flipping, random color jittering, and random
gray scaling. The input images are randomly scaled with
the scaling factors of 0.5, 0.75, and 1.0. Also, the input
images are horizontally flipped with the probability of 0.5.
The brightness, saturation and hue of the input images are
randomly changed with the factor of 0.1 for each change.
The input images are randomly converted to grayscale with
the probability of 0.3.



Figure C2. Attention scores from IL token to image features. We visualize the attention scores computed from the last self-attention layer
of the encoder in Glance transformer. Higher attention scores are highlighted in red color on images.
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Figure C3. Attention scores from RL token to role features. We visualize the attention scores computed from the last self-attention layer of
the encoder in Gaze-S1 transformer. Note that we show the roles where RL token has top-10 attentions scores. In Figure 7(b) of the main
paper, we show the results corresponding to the roles in the frame of the ground-truth verb.

B.4. Training Details

We employ AdamW Optimizer [6] with the weight de-
cay of 10−4, β1 = 0.9, and β2 = 0.999. For stable training,
we apply gradient clipping with the maximal gradient norm
of 0.1. The transformers, classifiers and learnable embed-
dings are trained with the learning rate of 10−4. The CNN
backbone is fine-tuned with the learning rate of 10−5. Note
that we have a learning rate scheduler and the learning rates
are divided by 10 at epoch 30. For batch training, we set the
batch size to 16. We train CoFormer for 40 epochs, which
takes about 30 hours on four RTX 3090 GPUs.

C. Qualitative Evaluations

We visualize the attention scores computed in the atten-
tion layers of the transformers in our CoFormer. Figure C2
shows that IL token captures the essential features to esti-
mate the main activities for two Cramming images and two
Ballooning images. Figure C3 shows the roles where RL
token has top-10 attention scores, and the classification re-
sults from the noun classifier placed on top of the encoder
in Gaze-S1 transformer; attention scores among 190 roles
sum to 1. Note that several roles where RL token has high
attention scores are not relevant to the main activity, but the
noun classification results corresponding to those roles are



Figure C4. Attention scores on frame-role queries. We visualize the attention scores computed from the last self-attention layer of the
decoder in Gaze-S2 transformer.
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Figure C5. Attentions scores from frame-role queries to image features. We visualize the attention scores computed from the last cross-
attention layer of the decoder in Gaze-S2 transformer. Higher attention scores are highlighted in red color on images.

highly relevant to the activity. Since RL token leverages the
role features which are fed as input to the noun classifier,
it is reasonable to aggregate those role features for accu-
rate verb prediction; the role features are aware of involved
nouns and their relations. Figure C3 demonstrates that RL
token can effectively capture involved nouns and their rela-
tions for verb prediction through self-attentions on the role
features in Gaze-S1 transformer. Figure C4 shows how role
relations are captured through self-attentions on frame-role
queries, which demonstrates that CoFormer similarly cap-
tures the relations if the situations in images are similar;

attention scores sum to 1 in each column. Figure C6 shows
the prediction results of CoFormer on the SWiG test set.
The first and second row show correct prediction results.
The third and fourth row show incorrect prediction results.
As shown in Figure C6, three noun annotations are given
for each role in the SWiG dataset. Note that the noun pre-
diction is considered correct if the predicted noun matches
any of the three noun annotations. The grounded noun pre-
diction is considered correct if a noun, a bounding box, and
box existence are correctly predicted for a role.
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Figure C6. Prediction results of our CoFormer on the SWiG test set. Dashed boxes denote incorrect grounding predictions. Incorrect noun
predictions are highlighted in gray color.
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Figure D7. Grounded semantic aware image retrieval on the SWiG dev set. For each query image, we show the retrieval results which have
top-5 similarity scores computed by GrSitSim(·) [7]. This retrieval computes the similarity between two images considering the predicted
verbs, nouns, and bounding-box groundings of the nouns.

GrSitSim(I, J) = max


1[v̂I

i = v̂J
j ]

i · j · |Rv̂I
i
|

|R
v̂I
i
|∑

k=1

1[n̂I
i,k = n̂J

j,k]
·
(
1 + IoU(b̂′

I

i,k, b̂
′J
j,k)
) ∣∣∣∣∣1 ≤ i, j ≤ 5

 . (D.6)

D. Application
As shown in Figure D7, we can apply GSR models to

grounded semantic aware image retrieval. This image re-
trieval computes the similarity between two images con-
sidering their grounded situations. In details, a similarity
score between an image I and an image J is computed
by GrSitSim(I, J) (Eq. D.6). Given an image I , a GSR
model predicts the top-5 most probable verbs v̂I1 , ..., v̂

I
5 .

For each predicted verb v̂Ii , the model predicts nouns

n̂Ii,1, ..., n̂
I
i,|R

v̂I
i
| and bounding boxes b̂′

I

i,1, ..., b̂′
I

i,|R
v̂I
i
|.

These prediction results are used in the computation of
GrSitSim(I, J). By this score function, the similarity score
is maximized if the top-1 predicted verb and the predicted
grounded nouns are same for the two images I and J . Us-
ing this retrieval, we can retrieve images which have similar
grounded situations with the situation of a query image.

E. Computational Evaluations
The number of parameters and inference time of our

CoFormer are shown in Table E1. We also evaluate JSL [7]
and GSRTR [1] on the SWiG test set using a single 2080Ti
GPU with a batch size of 1. JSL uses two ResNet-50 [4]
and a feature pyramid network (FPN) [5] in the CNN back-
bone, while GSRTR and our CoFormer only employ a sin-
gle ResNet-50 in the backbone; these two models demand
much shorter inference time than JSL, which is crucial for
real-world applications. GSRTR and CoFormer are trained
in an end-to-end manner, but JSL is trained separately in
terms of verb model and grounded noun model.

Method Backbone #Params Inference Time
JSL [7] R50, R50-FPN 108 M 80.23 ms (12.46 FPS)
GSRTR [1] R50 83 M 21.69 ms (46.10 FPS)
CoFormer (Ours) R50 93 M 30.62 ms (32.66 FPS)

Table E1. Number of parameters and inference time. Inference
time was measured on the SWiG test set using one 2080Ti GPU.

Area (width× height) Aspect Ratio (width/height)
Metric 0-10% 10-20% 20-100% 0-5% 5-95% 95-100%
value 66.82 69.68 78.64 72.75 76.24 71.88
grnd value 7.42 25.38 65.49 36.88 62.62 31.01

Table F2. Quantitative analysis of our CoFormer on the SWiG
dev set in Ground-Truth Verb evaluation setting. The effects of
box scales and aspect ratios are evaluated. Each range denotes the
ratio of ground-truth boxes when sorted by the value of area or
aspect ratio in ascending order.

F. Limitation

As shown in Table F2, CoFormer suffers from estimat-
ing the noun labels and boxes for objects which have small
scales (Area 0-10% and 10-20%) or extreme aspect ratios
(Aspect Ratio 0-5% and 95-100%). To overcome such lim-
itation, one may leverage multi-scale image features.
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