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method training datasets MPIJPE| PA-MPJPE| MPVPE]

Human3.6M [6], MPI-INF-3DHP [15], MSCOCO [13],

SPIN [11] MPII [2]. LSP [5]. LSP-Extended [0] 121.2 69.9 144.1

Pose2Mesh [5] Human3.6M [6], MuCo-3DHP [16], MSCOCO [13] 124.8 79.8 149.5

12L-MeshNet [17] Human3.6M [6], MuCo-3DHP [16], MSCOCO [13] 115.7 73.5 162.0
Human3.6M [6], MPI-INF-3DHP [15], MSCOCO [13],

ROMP [19] MPII [2], LSP [8], LSP-Extended [9], AICH [21], 104.8 63.9 127.8

MuCo-3DHP [16], OH [23], PoseTrack [!], CrowdPose [ 2]
3DCrowdNet (Ours) MuCo-3DHP [16], MSCOCO [13] 88.3 59.2 112.8

Table A. Comparison on 3DPW-Crowd between 3DCrowdNet and previous methods. 3DCrowdNet uses the least training datasets and

achieves the best accuracy on in-the-wild crowded scenes.

In this supplementary material, we first clarify that the
best accuracy of 3DCrowdNet in the main manuscript’s Ta-
ble 5 is not from using more training data in Section A.1l.
Then, we go through the details of testing sets in Sec-
tion A.2. In Section B, we provide additional qualitative
results, including comparisons with other methods. In Sec-
tion C, we discuss the limitation of 3DCrowdNet and its
potential solutions. Last, we give details of 2D pose estima-
tors used in our experiments in Section D.

A. Datasets
A.1. Training sets of different methods

Table A demonstrates that the superiority of 3DCrowd-
Net does not come from using more training data. It shows
the training datasets used in the previous methods of the
main manuscript’s Table 5. We trained 3DCrowdNet on
one MoCap dataset and one in-the-wild 2D dataset, which
is the least training set among methods, and we tested it on
3DPW-Crowd. It still significantly outperforms the previ-
ous methods in all metrics. We used 2D pose outputs of
HigherHRNet [4], which is trained only on MSCOCO [13].

The results strongly support that our contributions listed in
the main manuscript’s Section 1.

A.2. Details of testing sets

3DPW-Crowd. The sequence names of 3DPW-Crowd are
courtyard_hug 00 and courtyard_dancing_00, a subset of
the 3DPW [20] validation set. 3DPW-Crowd contains 1073
images and 1923 persons with GT 3D pose and shape an-
notations. The average bounding box IoU is 37.5%, and
the CrowdIndex [12] is 49.3%. We used 14 joints defined
by Human3.6M [6] for evaluating PA-MPJPE and MPJPE
following the previous works [5, 11, 17].

MuPoTS. MuPoTS [16] contains 20 sequences, 8370 im-
ages, and 20899 persons with GT 3D pose annotations. The
sequences are captured indoors and outdoors, and GT 3D
poses are obtained by a multi-view marker-less motion cap-
ture system. The average bounding box IoU is 3.8%, and
the CrowdIndex [12] is 13.2%. We used the official MAT-
LAB code for evaluation.

CMU-Panoptic. We selected four sequences that show
people doing social activities, namely Haggling, Mafia, Ul-
timatum, and Pizza following [7,22]. Sequences captured
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Figure A. Visualization of 3D meshes from different viewpoints.
Our 3DCrowdNet can recover a 3D shape that best describes the
target person in an image, even when provided with inaccurate 2D
poses, using the target person’s image features.

by the 16th and 30th cameras are selected. The sequences
contain 9600 frames and 21,404 persons with GT 3D pose
annotations. The average bounding box IoU is 2.0%, and
the CrowdIndex [12] is 11.1%. We used pre-processed GT
annotations and followed the evaluation protocol of [7] in
their official code repository.

3DPW. We used the test set of 3DPW [20] following the
official split protocol. The test set contains 26240 images
and 35515 persons with GT 3D pose and shape annota-
tions. The average bounding box IoU is 3.7%, and the
CrowdIndex [12] is 4.9%. Sequences starring one actor
are excluded in computing the bounding box IoU and the
CrowdIndex. We used 14 joints defined by Human3.6M [6]
for evaluating PA-MPJPE and MPJPE following the previ-
ous works [5, 11, 17].

B. More qualitative results

Accurate 3D meshes from erroneous 2D pose input.
Figure A shows that our 3DCrowdNet can estimate ro-
bust 3D meshes, given inaccurate 2D poses from in-the-
wild crowded scenes. Due to inter-person occlusion and
overlapping bounding boxes between people, 2D pose es-
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Figure B. Illustration of joint sets. The red skeleton of the in-
tersection of joint sets defines the joints’ neighborhood of graph
convolution used in the joint-based regressor.

timators [3, 4] may produce inaccurate joint predictions as
shown in the first, second, and third rows. To handle such
cases, the feature extractor of 3DCrowdNet assigns don’t-
care values to the joint predictions with low confidence
(e.g. lower than 0.1 for outputs from [4]) using heatmap
representation, as discussed in Section 3.1 of the main
manuscript. Then, the joint-based regressor of 3DCrowd-
Net refines the 2D pose heatmap, while predicting a 3D
pose with image features containing the image’s context in-
formation. The 2D pose heatmap has a different joint set,
a superset of joint sets defined by multiple datasets, with
the 3D pose’s joint set, an intersection of joint sets defined
by multiple datasets. Figure B depicts each joint set. Last,
the joint-based regressor samples image features using the
(z,y) pixel positions of the 3D pose and estimates human
model parameters, SMPL [14] parameters. The joint-based
regressor’s graph convolutional layers refines the image fea-
tures of joint predictions by fully exploiting the human kine-
matic prior and regress parameters of a 3D mesh that best
describes a target person in a crowd. The fourth and fifth
rows of Figure A prove that our approach is also effective on
estimating robust 3D meshes from truncated images, which
often have missing 2D joint predictions.

Comparison with SPIN. We provide more qualitative com-
parison with SPIN [11] in Figure C. SPIN is one of the
state-of-the-art methods that are based on the two wheels of
the current 3D human mesh estimation literature, the mixed
batch training and the model-based approach using a global
feature discussed in Section 1 of the main manuscript. Our
3DCrowdNet produces accurate and robust 3D meshes from
diverse in-the-wild crowded scenes. On the other hand,
SPIN predicts an incorrect overall pose for a person un-
der severe inter-person occlusion (top-left), estimates inac-
curate leg poses (bottom-left, bottom-right), and produces
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Figure C. Qualitative comparison on the CrowdPose [12] test set. We highlighted the failure cases of SPIN [11] with red circles. SPIN
tends to be sensitive to occlusion, while 3DCrowdNet provides robust 3D meshes.

input image 3DCrowdNet(Ours)

Figure D. Qualitative comparison on the CrowdPose [12] test set. We highlighted the failure cases of ROMP [19] with red circles. Wrong
global rotation of occluded persons (the third and fourth rows); inaccurate leg poses under inter-person occlusion (the first and third rows).
3DCrowdNet produces much more robust 3D meshes.

noisy 3D meshes (top-right, bottom-left, bottom-right) that bottom-up method for multi-person 3D mesh estimation.
show vulnerability to inter-person occlusion. Our 3DCrowdNet produces accurate and robust 3D meshes
from diverse in-the-wild crowded scenes. On the contrary,

Comparison with ROMP. We provide more qualitative ROMP predicts the wrong global rotation of a target per-

comparison with ROMP [19] in Figure D. ROMP is a
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Figure E. Qualitative comparison on the CrowdPose [12] test set. From left, an input image, 2D pose input, 3DCrowdNet, 12L-
MeshNet [17], and Pose2Mesh [5] outputs. Our 3DCrowdNet successfully disentangles a target person from other people in a bounding
box compared with I2L.-MeshNet. Also, 3DCrowdNet produces a 3D shape that best describes a target person in images, while Pose2Mesh
estimates a plausible 3D shape for given 2D poses, which does not correspond to input images. 3DCrowdNet and I2L-MeshNet use the
same bounding boxes to crop an image for each person. 3DCrowdNet and Pose2Mesh use the same 2D poses from [4].
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Figure F. Failure cases of 3DCrowdNet.
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Figure G. 3DCrowdNet’s outputs on 3DPW-Crowd.

son from in-the-wild crowded scenes (the third and fourth
rows) and produces inaccurate leg poses under severe inter-
person occlusion and crossed human parts (the first and sec-
ond rows).

Comparison with Pose2Mesh and 12L-MeshNet. Fig-
ure E shows the qualitative comparison between 3DCrowd-
Net, Pose2Mesh [5], and I2L-MeshNet [17]. Pose2Mesh
and I2L-MeshNet are state-of-the-art model-free 3D mesh

estimators, which predict coordinates of mesh vertices. Es-
pecially, Pose2Mesh is one of the most relevant competi-
tors, since it can also benefit from the same 2D pose in-
put. 3DCrowdNet produces much more robust 3D meshes
from in-the-wild crowded scenes than the two methods.
Pose2Mesh estimates the most plausible 3D mesh for a
given 2D pose (the first and fourth rows), not the 3D mesh
that best describes a target in a crowd, as discussed in Sec-
tion 5 of the main manuscript. Also, it often wrongly cor-
rects the 2D pose input and produces common standing leg
poses different from the images (the third, fifth, and sixth
rows). I2L.-MeshNet fails to distinguish different people in
overlapping bounding boxes (the fifth and sixth rows). In
addition, it tends to provide very noisy 3D pose and shape
of a target in crowded scenes, which reveals the method’s
vulnerability to inter-person occlusion. The results in the
second row also validate the superiority of 3DCrowdNet’s
robustness to truncated bodies.

Results on 3DPW-Crowd. Figure G illustrates the
3DCrowdNet’s outputs on 3DPW-Crowd. 3DCrowdNet es-
timates robust 3D pose and shape on images that show peo-
ple having highly close interaction. Different people in
overlapping bounding boxes are disentangled, and occluded
body parts are reasonably reconstructed.

C. Limitation

Although the proposed 3DCrowdNet highly outperforms
the previous 3D mesh estimation methods in in-the-wild
crowded scenes, there is a limitation to be resolved in fu-
ture work. As shown in Figure F, when the 2D pose is inac-
curate and appearances of nearby persons are very similar,
3DCrowdNet fails to produce robust 3D meshes. The top-
left and bottom-right cases of Figure F are the representa-
tive cases, which can be easily found in sports images. In



such cases, it is challenging for 3DCrowdNet to correct the
inaccurate 2D pose with image features, since the context
information in image features is ambiguous due to indistin-
guishable appearances. One way of resolving the challenge
could be to model the relative translation between persons
to better understand the context. Alternatively, data aug-
mentation to make a network robust to similar appearances
would be an interesting direction.

D. 2D pose estimators.

In this work, we used 2D pose outputs from Open-
Pose [3] and HigherHRNet [4]. The OpenPose outputs
used in 3DPW [20] are included in the annotations of
3DPW [20]. The OpenPose used in MuPoTS [16] are ob-
tained by running the third-party PyTorch [18] code imple-
mentation'. OpenPose is trained on COCO2017 train [ 3]
dataset. It achieves 65.3 mAP (mean Average Precision) in
COCO02017 val dataset. In the CrowdPose [12] test set, it
achieves 48.7 and 32.3 mAPs for medium and hard cases,
respectively. All the HigherHRNet outputs are obtained by
running the official code implementation. HigherHRNet
is trained on COCQO2017 train dataset. It achieves 0.671
mAP on COCO2017 val dataset. In the CrowdPose [12]
test set, it achieves 68.1 and 58.9 mAPs for medium and
hard cases, respectively.

License of the Used Assets

e MSCOCO dataset [ | 3] belongs to the COCO Consortium
and are licensed under a Creative Commons Attribution
4.0 License.

e Human3.6M dataset [6]’s licenses are limited to aca-
demic use only.

e MPII dataset [2] is released for academic research only
and it is free to researchers from educational or research
institutes for non-commercial purposes.

o 3DPW dataset [20] is released for academic research only
and it is free to researchers from educational or research
institutes for non-commercial purposes.

o CrowdPose dataset [12] is released for academic research
only and it is free to researchers from educational or re-
search institutes for non-commercial purposes.

e MuCo-3DHP and MuPoTS [16] are released for any non-
commercial purposes.

e CMU-Panoptic [10] is released only for research pur-
poses.

e The third party implementation’ of OpenPose [3] is li-
censed under the MIT license.

e HigherHRNet [4]’s implementation® is licensed under the

Thttps://github.com/tensorboy/pytorch_Realtime_Multi- Person_Pose_
Estimation

Zhttps://github.com/tensorboy/pytorch_Realtime_Multi- Person_Pose_
Estimation

3https://github.com/HRNet/HigherHRNet- Human- Pose-Estimation

MIT license.
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