
A. Weighting Schemes
A.1. Additional Visualizations

In the main text, we showed weights of both our new
weighting scheme and the baseline, as functions of signal-
to-noise ratio (SNR). In Fig. A (left), we show weights as
functions of time steps (t). To exhibit relative changes of
weights, we show normalized weights as functions of both
time steps (Fig. A (middle)) and SNR (Fig. A (right)). We
normalized so that the sum of weights for all time steps
become 1. Normalized weights suggest that larger γ sup-
presses weights at steps near t = 0 and uplifts weights at
larger steps. Note that weights of VLB objective are equal
to a constant, as such objective does not impose any induc-
tive bias for training. In contrast, as discussed in the main
text, our method encourages the model to learn rich content
rather than imperceptible details.

A.2. Derivations

In the main text, we wrote the baseline weighting scheme
λt as a funtion of SNR, which characterizes the noise level
at each step t. Below is the derivation:
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which is a differential of log-SNR(t) regarding time-step t.

B. Discussions
B.1. Limitations

Despite the promising performances achieved by our
method, diffusion models still need multiple sampling steps.
Diffusion models require at least 25 feed-forwards with
DDIM sampler, which makes it difficult to use diffusion
models in real-time applications. Yet, they are faster than
autoregressive models which generate a pixel at each step.
In addition, we have observed in section 4.3 that our method
enables better FID with half the number of steps required
by the baseline. Along with our method, optimizing sam-
pling schedules with dynamic programming [9] or distill-

ing DDIM sampling into a single step model [5] might be
promising future directions for faster sampling.

B.2. Broader Impacts

The proposed method in this work allows high-fidelity
image generation with diffusion-based generative models.
Improving the performance of generative models can en-
able multiple creative applications [2, 6]. However, such im-
provements have the potential to be exploited for deception.
Works in deepfake detection [8] or watermarking [11] can
alleviate the problems. Investigating invisible frequency ar-
tifacts [8] in samples of diffusion models might be promis-
ing approach to detect fake images.

C. Implementation Details
For a given time-step t, the input noisy image xt and

output noise prediction ϵ and variance σt are images of
the same resolution. Therefore, ϵθ is parameterized with
the U-Net [7]-style architecture of three input and six
output channel dimensions. We inherit the architecture of
ADM [3], which is a U-Net with large channel dimension,
BigGAN [1] residual blocks, multi-resolution attention, and
multi-head attention with fixed channels per head. Time-
step t is provided to the model by adaptive group normal-
ization (AdaGN), which transforms t embeddings to scales
and biases of group normalizations [10]. However, for effi-
ciency, we use fewer base channels, fewer residual blocks,
and a self-attention at a single resolution (16×16).

Hyperparameters for training models are in Tab. A. We
use γ = 0.5 for FFHQ and CelebA-HQ as it achieve slightly
better FIDs than γ = 1.0 on those datasets. Models con-
sist of one or two residual blocks per resolution and self-
attention blocks at 16×16 resolution or at bottleneck layers
of 8×8 resolution. Our default model has only 94M param-
eters, while recent works rely on large models (larger than
500M) [3]. While recent works use 2 or 4 blocks per reso-
lution, we use only one block, which leads to speed-up of
training and inference. We use dropout when training on
limited data. We trained models using EMA rate of 0.9999,
32-bit precision, and AdamW optimizer [4].

D. Additional Results
Qualitative. Additional samples for all datasets men-

tioned in the paper are in Fig. D.
Quantitative. In Fig. 1 of the main text, we measured

perceptual distances to investigate how the diffusion pro-
cess corrupts perceptual contents. In Fig. 2, we qualitatively
explored what a trained model learned at each step (Fig. 2).
Here, we reproduce Fig. 1 at various datasets and resolu-
tions in Fig. B and show the quantitative result of Fig. 2 in
Fig. C. These results indicate that our investigation in Sec.
3.1 holds for various datasets and resolutions.



Figure A. Unnormalized or normalized weights as functions of diffusion steps or signal-to-noise ratio (SNR). Large t and small SNR
indicates noisy image xt near random noise xT , whereas small t and large SNR indicates xt near a clean image x0.

FFHQ, CelebA-HQ AFHQ-D CUB, Flowers, MetFaces Tab. 3 (b) Tab. 3 (c) Tab. 3 (d)
T 1000 1000 1000 1000 1000 1000
βt linear linear linear linear linear linear
Model Size 94 94 94 81 90 132
Channels 128 128 128 128 128 128
Blocks 1 1 1 1 1 2
Self-attn 16, bottle 16, bottle 16, bottle 16, bottle bottle 16, bottle
Heads Channels 64 64 64 64 64 64
BigGAN Block yes yes yes no yes yes
γ 0.5 1.0 1.0 1.0 1.0 1.0
Dropout 0.0 0.1 0.1 0.1 0.1 0.1
Learning Rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5

Images (M) 18, 4.4 2.4 4.8, 4.4, 1.6 0.8 0.8 0.8

Table A. Hyperparameters.



Figure B. Generalization of sec. 3. Results with CelebA-HQ, LSUN-Church, and CUB at 2562 and 642 resolutions.

Figure C. Stochastic reconstruction. Perceptual distance between
input and reconstructed image as a function of signal-to-noise ra-
tio, measured with random 200 images from FFHQ.
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Figure D. Additional samples generated with our models traind on various datasets.


