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A. PyTorch-like pseudo-code to solve the linear pro-
gramming problem using QPTH .

Algorithm 1: PyTorch code to compute flow X̂
import torch
# A differentiable QP solver for PyTorch
from qpth.qp import QPFunction

def compute flow(u, v):
# u: Tensor of shape [nbatch,c,m]
# v: Tensor of shape [nbatch,c,n]
nbatch, , m = u.shape
n = v.shape[2]

# Objective Function in Eq. 4
Q = 1e-3 * torch.eye(m*n).float()
Q = Q.unsqueeze(0).repeat(nbatch,1,1)
p = torch.bmm(u.permute(0,2,1), v)
p = p.view(nbatch, m*n)

# Inequality Constraint xi,j ≥ 0
G = -torch.eye(m*n).float()
G = G.unsqueeze(0).repeat(nbatch,1,1)
h = torch.zeros(nbatch, m*n)

# Equality Constraint in Eq. 5
A = torch.zeros(nbatch, m+n, m*n)
for i in range(m):

A[:, i, n*i:n*(i+1)] = 1
for j in range(n):

A[:, m+j, j::n] = 1
s = get weights(u, v) # (nbatch, m)
d = get weights(v, u) # (nbatch, n)
b = torch.cat([s, d], dim=1)

# flow X̂ shape:(nbatch,m,n) in Eq. 7
flow = QPFunction()(Q,p,G,h,A,b)
return flow.view(nbatch, m, n)

# Utility function for Eq. 5
def get weights(a, b):

node = a.shape[2]
w = a*b.sum(dim=2).repeat(1,1,node)
w = torch.relu(w.sum(dim=1)) + 1e-3
return w

*Interned with SketchX

B. Additional Discussion

B.1 Why our proposed method outperform SceneS-
ketcher, a method that uses bounding box anno-
tation for scene graph matching?

Performance of graph based methods depend significantly
on (1) graph construction step [5], and (2) graph matching
loss used for a downstream task [3]. This hints at the bottle-
neck of graph based approaches – a sub-optimal graph, that
is often constructed based on some heuristics (e.g., com-
puting cosine distance of selected foreground regions [6]),
might lead to sub-optimal performance. The graph match-
ing metric used in SceneSketcher [6] has a remarkable sim-
ilarity to that of Multiple Instance Learning [2], that com-
putes a loss between the most similar pairs, but leaves the
other pairs unconstrained. While one could adapt Sce-
neSketcher using Gromov-Wasserstein distance [4], in this
work, we advocate for a graph-free approach that do not
need expensive bounding box annotations.

B.2 Why not train on partial sketches?

While training on partial sketches can artificially inflate
retrieval performance during evaluation, the objective of
this paper is to study robustness of scene-level FG-SBIR
methods for partial or incomplete sketches – especially for
scenes where the problem is most relevant, as shown in our
pilot study in Sec. 1. In addition, the strategy used to mask
local sketch regions can have significant effect on perfor-
mance of the model [1]. Hence, instead of relying on tricks
based on heuristics to improve performance, our objective is
to propose a distance function which is implicitly robust to
partial sketches with a well studied theoretical background
that popular in the research community.

B.3 Understanding the dilemma between fast- and
slow-retrieval:

There can be two major approaches to fine-grained image
retrieval, a fast, and a slow retrieval: (i) In fast retrieval,
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photos and sketches are embedded independently into a
joint embedding space and then their similarities are com-
pared. We pre-compute the feature vectors for each photo
in the gallery independently, prior to having access of any
query sketch. During inference, a single pass through the
encoder is performed to embed the input sketch query to
the joint sketch-photo embedding space. The resulting fea-
ture vector is then matched to its semantically similar photo
using some distance function (usually euclidean or cosine
distance [7,9]). Given n photos in the gallery set, one would
spend O(1) forward pass through encoder network. (ii) On
contrary, slow-retrieval models trade off compute time for
accuracy gains. They explore the interactions between pho-
tos and query sketch before calculating similarities in the
joint sketch-photo embedding space. Existing methods like
Wang et al. [8], propose to adaptively control the informa-
tion flow for message passing across modalities. However,
a key limitation to adaptively updating sketch and photo
features is that we can only compute paired-feature em-
bedding that jointly represents similarity of a sketch-photo
pair. Considering n photos in our gallery during infer-
ence, we have to compute the paired embedding of a given
query sketch with each photo that needs O(n) forward pass
through the network. For practical applications where n can
be millions of photos, O(n) forward pass through a heavy
neural network is intractable.

We propose a mid-ground between fast- and slow- re-
trieval. Instead of computing paired sketch-photo embed-
ding, we propose to independently compute local-level fea-
ture maps for each sketch and photo. Our novel dis-
tance function, then adaptively computes region-wise fea-
tures from sketch and photo using region-wise associativ-
ity that gives greater weightage to semantically similar lo-
cal patches. Since we independently compute local-level
features, during inference, our approach needs O(1) for-
ward pass through a neural network. Although our simple
trick can result in competitive performance to slow-retrieval
models, storing local-level features increase the space com-
plexity. Effective approaches in annealing space complexity
could be an interesting direction of future research.
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