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Methods Time (s) GPU Memory (Mb)
RIB [12] 2.451 5, 931

ITSA 0.007 1, 225

Table 1. Comparison of GPU memory requirement and training
time per iteration between the robust information bottleneck (RIB)
and the proposed ITSA methods. The RIB method has signifi-
cantly higher GPU memory requirement and longer training time
as compared to the ITSA.

1. Implementation details

1.1. Toy Experiment

In this section, we discuss the implementation details
of our toy experiment (refer to Section 3.3 of the main
manuscript). Following [1], we modelled the digit recog-
nition network as a variational auto-encoder. Our encoder
has the following structure: conv-pool-conv-pool where
it consists of two 5 × 5 convolutional layers with 64 and
128 channels respectively. Each convolutional layer is fol-
lowed by a ReLU activation function and a max pooling
operation with kernel size of 2 × 2. We utilize two Fully-
Connected (FC) layers to estimate the parameters mean µ
and standard deviation σ of the latent distributions. The di-
mension of the latent features is set to 256. Meanwhile, the
decoder has the following structure: fc-fc-softmax. For
the decoder, the input dimension of the two FC layers was
set to 1024 and the size of the softmax layer is 10 (number
of classes). The batch size was set to 128 and Adam was
selected as the optimizer. The networks were trained for
100 epochs with a constant learning rate of 1e−4. We apply
the same settings for all four models, namely the baseline,
the standard Information Bottleneck [1], the Robust Infor-
mation Bottleneck [12] and our proposed method. Follow-
ing [13], we train the networks using the first 10, 000 sam-
ples in the MNIST [8] training set. The optimized networks
were evaluated on the MNIST and MNIST-M [4] test sets.
The hyper-parameter β in the standard and robust informa-

Networks KITTI Baseline ϵ
0.1 0.2 0.5 1

PSMNet 2012 27.8 6.3 5.5 5.2 6.0
GwcNet 11.7 5.6 5.1 4.9 5.6
PSMNet 2015 30.7 6.9 6.1 5.8 6.4
GwcNet 12.8 5.9 5.5 5.4 5.7

Table 2. The relationship between the perturbation strength ϵ in
SCP and the performance of stereo disparity estimation in PSM-
Net [2] and GwcNet [6]. The performances were evaluated on the
KITTI-2012 [5] and KITTI-2015 datasets [11], using the D1 met-
ric. The hyper-parameter λ was set to 0.1 in these experiments.

tion bottleneck networks was set to 0.01 respectively. For
the proposed method, the hyper-parameter ϵ and λ were set
to 0.8 and 0.1 respectively. The comparison of training time
per iteration (s) and GPU memory requirement are included
in Tab. 1. The comparison clearly shows that our proposed
ITSA method requires significantly lower training time and
GPU memory consumption as compared to the robust infor-
mation bottleneck (RIB) method.

1.2. Semantic Segmentation

For the semantic segmentation task discussed in Sec-
tion 4.6 of the main manuscript, we adopted the Fully Con-
volutional Networks (FCN) [9] backboned with the Ima-
geNet pre-trained ResNet-50 [7] as our model. The net-
work was trained using the GTAV [14] synthetic dataset,
which consists of 24, 966 samples with annotations com-
patibles with the Cityscapes [3] dataset. We randomly se-
lected 23, 466 samples as training set and the remaining
1500 as validation set. The optimized model was evaluated
on the Cityscapes validation set, using the mean intersec-
tion over union (mIoU) metric. The mIoU is the average of
all IoU values over all classes. Training was conducted for
20 epochs using the Adam optimizer with an initial learning
rate of 1e-4. We also adopted the polynomial learning rate
scheduling with the power of 0.9. The batch size was set
to 12 and the hyper-parameter ϵ and λ were set to 0.2 and

1



Networks KITTI λ
0.0 0.01 0.1 0.5 1.0 2.0

PSMNet 2012 8.1 7.2 5.2 7.1 6.8 8.4
GwcNet 5.3 5.5 4.9 5.5 5.8 6.1
PSMNet 2015 8.6 6.6 5.8 7.2 6.6 8.3
GwcNet 5.9 6.0 5.4 5.9 6.2 6.9

Table 3. Relationship between hyper-parameter λ and the per-
formance of stereo disparity estimation in PSMNet [2] and Gwc-
Net [6]. The performances were evaluated using the D1 metric,
and the ϵ was set to 0.5.

Methods ∇xz
λ

0.0 0.01 0.1 0.5 1.0 2.0

PSMNet [2] Max 43.1 39.7 16.9 11.5 9.1 8.4
Min -39.4 -41.4 -24.5 -12.0 -7.4 -8.7

GwcNet [6] Max 49.5 29.8 17.8 14.1 12.2 9.2
Min -33.4 -31.7 -17.7 -14.3 -11.2 -8.5

Table 4. Relationship between hyper-parameter λ and the range
of the gradient ∇xz. The gradients are computed using the Scene
Flow testing set.

0.01 respectively. To prevent the model from overfitting,
data augmentations such as color jittering, Gaussian blur,
random grey-scaling and random cropping were conducted.

2. Hyper-parameters Selection

In this section, we discuss the effect of the hyper-
parameters ϵ and λ on the performance of stereo match-
ing networks. The hyper-parameter ϵ controls the strength
of perturbation in the proposed shortcut perturbation (SCP)
augmentation method. As shown in Tab. 2, the proposed
SCP method can consistently improve the performance of
stereo matching in both PSMNet and GwcNet. The best
performance was achieved when ϵ was set to 0.5.

Meanwhile, the hyper-parameter λ controls the trade-off
between learning task-relevant and shortcut-invariant fea-
tures. As shown in Tab. 3, for both PSMNet and GwcNet,
the best results was obtained when λ = 0.1. Furthermore,
in Tab. 4, we observe that the sensitivity of the extracted fea-
tures with respect to the changes in the inputs (represented
by the magnitude of the gradient ∇xz) decreases as λ in-
creases. We speculate that large values of λ will cause the
network to over-prioritize the learning of shortcut-invariant
features and harm the performance of stereo matching.
Conversely, the network will focus on learning task-relevant
features which may include shortcuts and deteriorate the do-
main generalization performance, when the λ is small.

3. Lemma 3.1 - Proof

In this section, we provide the proof to Lemma 3.1 dis-
cussed in the main manuscript. We first take the first order

Models FT ITSA Sun Cloud Rain Fog Night Avg

PSMNet [2]
✓ ✗ 3.94 2.82 11.51 6.50 16.66 8.28
✗ ✓ 4.78 3.24 9.43 6.31 8.56 6.46
✓ ✓ 1.94 1.61 4.12 1.72 8.51 3.58

GwcNet [6]
✓ ✗ 3.10 2.46 12.34 5.98 25.33 9.84
✗ ✓ 4.35 3.31 9.78 5.88 9.41 6.55
✓ ✓ 2.18 2.07 9.21 2.16 8.37 4.80

CFNet [16]
✓ ✗ 1.79 1.65 5.20 1.59 11.56 4.36
✗ ✓ 3.42 2.87 5.32 4.32 8.95 4.98
✓ ✓ 1.84 1.55 2.40 1.58 5.69 2.61

Table 5. Robustness evaluation on anomalous scenarios. Fine-
tuning the synthetically pre-trained stereo matching networks us-
ing the proposed ITSA method can significantly enhances the ro-
bustness of the fine-tuned models in the real-world anomalous sce-
narios including rainy and foggy weather and night-time. The per-
formances were evaluated using the D1 metric.

approximation of p(Z|X=x∗), which is defined as:

p(Z|X=x∗) = p(Z|X=x) + ϵu⊤ · ∇xp(Z|X=x)
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and by taking the square on both sides, we can expand it as
follow:
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4. ITSA-Finetuned Networks Robust Analysis
In this section, we evaluate the robustness of stereo

matching networks fine-tuned using the proposed ITSA ap-
proach. Our experimental results showed that using the
proposed ITSA for fine-tuning the selected stereo matching
networks can further enhance the networks’ robustness to
anomalous scenarios. As shown in Tab. 5, PSMNet [2] and
GwcNet [6] that are fine-tuned on the KITTI-2015 train set,
using the ITSA method have achieved an overall improve-
ment of 4.70% and 5.04%. Furthermore, ITSA can also
improve the robustness of the top-performing CFNet [16]
in the challenging real-world scenarios (1.75% overall im-
provement).

5. Additional Qualitative Results
Additional qualitative results of stereo matching tasks on

indoor and outdoor realistic data are included in Fig. 1 and
Fig. 2. We also included the qualitative results for anoma-
lous scenarios (e.g. rainy weather and night-time) in Fig. 3
and Fig. 4. Furthermore, additional qualitative results of
semantic segmentation task are also included in Fig. 5.
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Figure 1. Qualitative comparison on the Middlebury (half resolution) dataset [15], using the PSMNet [2], GwcNet [6] and CFNet [16].
For each example, the left stereo image and the ground truth disparity map are included in the left column. Moreover, the disparity maps
estimated by the baseline networks (pretrained on Scene Flow) are included on the top row and the results of our method are included in
the bottom row. The corresponding 2-pixel threshold error rate is also included on the predicted disparity map.
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Figure 2. Qualitative comparison on the KITTI 2015 [11] training set, using the PSMNet [2], GwcNet [6] and CFNet [16]. For each
example, the left stereo image and the ground truth disparity map are included in the left column. Moreover, the disparity maps estimated
by the baseline networks (pretrained on Scene Flow) are included on the top row and the results of our method are included in the bottom
row. The corresponding D1 error rate is also included on the predicted disparity map.

(a) Left (b) PSMNet (c) GwcNet (d) CFNet

Figure 3. Qualitative comparison on out-of-distribution rainy day data provided by the DrivingStereo [17]. The estimated disparity maps
are generated using the PSMNet [2], GwcNet [6] and CFNet [16]. The left stereo image and the ground-truth disparity map are included
in the left column. Moreover, the disparity maps estimated by the KITTI-2015 [11] fine-tuned networks are included on the first row (b-
d), and the results of our method (ITSA) are included in the third row (b-d). The corresponding D1 error rate is also superimposed on
the included error map. Our method can significantly improve the performance of these stereo matching networks in challenging unseen
domains, despite training on the synthetic data only..



(a) Left (b) PSMNet (c) GwcNet (d) CFNet

Figure 4. Qualitative comparison on out-of-distribution night-time data provided by the Oxford Robotcar [10]. The estimated disparity
maps are generated using the PSMNet [2], GwcNet [6] and CFNet [16]. The left stereo image and the ground-truth disparity map are
included in the left column. Moreover, the disparity maps estimated by the KITTI-2015 [11] fine-tuned networks are included on the first
row (b-d) and the results of our method (ITSA) are included in the third row (b-d). The corresponding D1 error rate is also superimposed
on the included error map. Our method can significantly improve the performance of these stereo matching networks in challenging unseen
domains.

(a) Input (b) Ground-Truth (c) Baseline (d) ITSA

Figure 5. Qualitative results of semantic segmentation. We have employed the FCN-8 backboned with the ResNet-50 as our network. Our
method (ITSA) can be extended to semantic segmentation networks and enhance the synthetic-to-real generalization performance. Best
view in color and zoom in for details.
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