
A. Theory and Proofs

A.1. Proof of Lemma 1: From RINCE to InfoNCE

We show that RINCE becomes asymptotically equivalent to InfoNCE when q ! 0. In particular, we prove the convergence
of RINCE and its derivative in the limit of q ! 0.

Proof. We first prove the convergence in the function space with the L’Hôpital’s rule:
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A (L’Hôpital’s rule)

= � log
es

+

�
⇣
es+ +

PK
i=1 e

s�i

⌘

= LInfoNCE(s) + log(�).

To prove the convergence in its derivative, we analyze the derivative with respect to the positive score s+ and the negative
score s�i . We begin with RINCE:
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We can see that the derivatives match the ones of InfoNCE
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A.2. Noisy Risk Bound for Exponential Loss
We justify the robustness of RINCE when q = 1 by extending Ghosh et al. [29]’s theorem to the exponential loss. The

proof technique can be applied to other bounded symmetric classification losses.

Corollary 2. Consider the setting of Ghosh et al. [29] and the exponential loss function L(s, y) = �yes. Let f⇤
⌘ =

arg inff2F R⌘
L(f) be the minimizer of the noisy risk and ✏ = inff2F RL(f) be the optimal risk. If ⌘x  ⌘max < 0.5 for all

x 2 X . If the prediction score is bounded by smax, we have R(f⇤
⌘ )  (✏+ 2⌘maxesmax)/(1� 2⌘max).

Proof. Consider a binary classification loss with the following form:

L̃x(f(x), y) = B + Lx(f(x), y) = B � y · ef(x) � 0,

where the prediction score f(x) is bounded by smax = log(B). Note that the boundedness assumption holds for general
representation learning on hypersphere, where the prediction score is the inner product between normalized feature vectors.
Importantly, the loss satisfies

L̃(f(x), 1) + L̃(f(x),�1) = 2B.

By construction, the optimal risk takes the following value:

inf
f2F

RL̃(f) = inf
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Ex⇠µ[L̃(f(x), yx)] = ✏+B := ✏̃,

and f⇤ = arg inff2F RL̃(f). Note that f⇤ is also a minimizer w.r.t. the original loss L( f⇤ = arg inff2F RL(f)), as an
additive constant will not change the optimum solutions. Expanding the noisy risk gives
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since f⇤
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Finally, we recover the original exponential loss without the additive term B. Plugging the form we have
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For exponential loss, setting B to esmax completes the proof.

For instance, when the noise level is 40%, we have RL(f⇤
⌘ )  5✏+ 4B. Note that the prediction score is bounded by 1/t

in our case as the representations are projected onto the unit hypersphere.

A.3. Lower bound of Wasserstein Distance
We now establish RINCE as a lower bound of WDM [33]. WDM is based on the Wasserstein distance, a distance metric

between probability distributions defined via an optimal transport cost. Letting µ and ⌫ 2 Prob(Rd ⇥Rd) be two probability
measures, we define the Wasserstein-1 distance with a Euclidean cost function as

W(µ, ⌫) = inf
⇡2⇧(µ,⌫)

E (X,V )
(X0,V 0)
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,

where ⇧(µ, ⌫) denotes the set couplings whose marginals are µ and ⌫, respectively. We are now ready to state our theorem.

Theorem 3. If �K > 1� � and f projects the representation to a unit hypersphere, we have
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Proof. By the additivity of expectation, we can bound the negative symmetric loss as follows
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where the last equality follows by �K > 1� �. Note that for �1
t  s  1

t , which implies |rses|  e1/t. Therefore, by the
mean value theorem, we have
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We can see that the Lipschitz constant of exp(f(·, ·)) with respect to the metric d is bounded by Lip(f)·e1/t
t . Therefore, by

Kantorovich-Rubinstein duality, we have
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A.4. Noisy Wasserstein Dependency Measure
The result is a simple combination of Corollary 2 and Theorem 3. If � � ⌘K�⌘+1

⌘K�⌘+1+K , by the assumption of additive noisy
models and the symmetry of loss, we have
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A.5. InfoNCE is not symmetric

Note that by taking the derivative with respect to the prediction score s, the definition is equivalent to @L(s,1)
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Within a batch of data, the gradients with respect to s+ and s� are entangled and do not sum to a constant, which fail to meet
the symmetry condition.

B. Experiment Details
B.1. CIFAR-10

We follow the experiment setup in [11], where the SimCLR [6] models are trained with Adam optimizer for 500 epochs
with learning rate 0.001 and weight decay 1e�6. The encoder is ResNet-50 and the dimension of the latent vector is 128.
The temperature is set to t = 0.5. The models are then evaluated by training a linear classifier for 100 epochs with learning
rate 0.001 and weight decay 1e�6. We use the PyTorch code in Figure 9 to generate the data augmentation noise.

1 def get_train_transform(noise_rate):
2 train_transform = transforms.Compose([
3 transforms.RandomResizedCrop(32),
4 transforms.RandomApply([transforms.RandomResizedCrop(32, scale=(0.2, 0.2))], p=noise_rate

),
5 transforms.RandomHorizontalFlip(p=0.5),
6 transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
7 transforms.RandomGrayscale(p=0.2),
8 transforms.GaussianBlur(kernel_size=int(0.1*32)),
9 transforms.ToTensor(),

10 transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])])
11 return train_transform

Figure 9. PyTorch code for CIFAR-10 data augmentation noise.

B.2. ImageNet
SimCLR We adopt the SimCLR implementation2 from PyTorch Lightning [84]. In addition, we spot a bug and fix

the implementation of negative masking of PyTorch Lightning according to Figure 10 and achieve 68.9 top-1 accuracy on
ImageNet (the one reported in the PyTorch Lightning’s website is 68.4). To implement RINCE, we only modify the lines that
calculates loss according to Figure 2.

Mocov3 We adopt the official code3 from Mocov3 [35]. To implement RINCE, we only modify the lines that calculates
loss in moco/builder.py according to Figure 2.

B.3. Kinetics-400
We adopt the official implementation4 from [19]. Similarly, we only modify the loss function in the criterions

directory. In particular, we use the SimCLR style implementation for both InfoNCE and RINCE loss. We also adopt the
same hyperparameters described in the git repository for training. We set the learning rate to 1e � 3 to finetune the models
on downstream classification tasks such as UCF101 and HMDB51 with the provided evaluation code.

2https://github.com/PyTorchLightning/lightning-bolts/tree/master/pl_bolts/models/self_supervised/
simclr

3https://github.com/facebookresearch/moco-v3
4https://github.com/facebookresearch/AVID-CMA

https://github.com/PyTorchLightning/lightning-bolts/tree/master/pl_bolts/models/self_supervised/simclr
https://github.com/PyTorchLightning/lightning-bolts/tree/master/pl_bolts/models/self_supervised/simclr
https://github.com/facebookresearch/moco-v3
https://github.com/facebookresearch/AVID-CMA


1 def compute_neg_mask(self):
2 total_images = self.num_nodes * self.gpus * self.batch_size * self.num_pos
3 world_size = self.num_nodes * self.gpus
4 batch_size = self.batch_size * self.num_pos
5 orig_images = self.batch_size
6 rank = int(os.environ["LOCAL_RANK"])
7

8 neg_mask = torch.zeros(batch_size, total_images)
9 all_indices = np.arange(total_images)

10 pos_members = orig_images * world_size * np.arange(self.num_pos)
11 for anchor in np.arange(self.num_pos):
12 for img_idx in range(orig_images):
13 delete_inds = orig_images * rank + img_idx + pos_members
14 neg_inds = torch.tensor(np.delete(all_indices, delete_inds)).long()
15 neg_mask[anchor * orig_images + img_idx, neg_inds] = 1
16 neg_mask = neg_mask.cuda(non_blocking=True)
17

18 return neg_mask
19

20 def nt_xent_loss(self, out_1, out_2, temperature):
21 if torch.distributed.is_available() and torch.distributed.is_initialized():
22 out_1_dist = SyncFunction.apply(out_1)
23 out_2_dist = SyncFunction.apply(out_2)
24 else:
25 out_1_dist = out_1
26 out_2_dist = out_2
27

28 out = torch.cat([out_1, out_2], dim=0)
29 out_dist = torch.cat([out_1_dist, out_2_dist], dim=0)
30

31 similarity = torch.exp(torch.mm(out, out_dist.t()) / temperature)
32

33 #################################### original code ####################################
34 # # from each row, subtract eˆ(1/temp) to remove similarity measure for x1.x1 #
35 # neg = similarity.sum(dim=-1) #
36 # row_sub = Tensor(neg.shape).fill_(math.e ** (1 / temperature)).to(neg.device) #
37 # neg = torch.clamp(neg - row_sub, min=eps) # clamp for numerical stability #
38 #######################################################################################
39

40 neg_mask = self.compute_neg_mask()
41 neg = torch.sum(similarity * neg_mask, 1)
42

43 pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / temperature)
44 pos = torch.cat([pos, pos], dim=0)
45

46 loss = -(torch.mean(torch.log(pos / (pos + neg))))
47

48 return loss

Figure 10. PyTorch Lightening implementation of SimCLR. The original implementation of negative masking (commented out) is prob-
lematic because it subtracts e1/t to remove similarity measure for pairs that consist of the same images. However, subtracting a constant
does not alter the gradient with respect to the model parameters. In particular, there are still gradients backpropagating through the false
positive pairs. We fix it by directly filtering out those false pairs with a negative mask.

B.4. ACAV100M
We again modify the official implementation of [19] for the ACAV100M experiments, where we modify the data loader

to adopt it to ACAV100M. Different from Kinetics-400 experiments, the input size is set to 8 ⇥ 2242 during the finetuning
process for computational efficiency. We again use the exact same set of hyperparameters from [19] for both training and
testing.

B.5. TU-Dataset
We adopt the official implementation5 from [40]. To implement RINCE, we only modify the loss in gsimclr.py file.
5https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU

https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU


C. Additional Results
C.1. Loss Visualization

We extend the analysis in section 4.1 by visualizing the loss and the scale of the gradients with respect to both positive
scores s+ and s� in Figure 11. Interestingly, distinct from the analysis for positive pairs, two losses treat the negative pairs
similarly. The gradient scale w.r.t. negative score increases when the negative score is large for both InfoNCE and RINCE
as Figure 11 (c) shows, implying that both of them have the “hard negative sampling” scheme. The hard negative sampling
strategy has been shown to improve the performance in downstream tasks [12]. In conclusion, InfoNCE (q ! 0) places more
weights on hard positive and hard negative pairs, while fully symmetric RINCE (q = 1) put more emphasis on easy positive
pairs and hard negative pairs.
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Figure 11. Loss Visualization. We visualize the (a) loss value and the (b) gradient scale with respect to the positive score s+ and (c)
gradient scale with respect to the negative score s� for different q while setting � = 0.5.

C.2. Exact Number of CIFAR-10 and ACAV100M Experiments

We first provide the exact numbers for CIFAR-10 and ACAV100M experiments.

⌘ InfoNCE q = 0.01 q = 0.1 q = 0.5 q = 1.0

0.0 93.4±0.2 93.4±0.2 93.2±0.1 93.3±0.1 93.0±0.2
0.2 93.1±0.1 93.3±0.3 93.0±0.1 93.2±0.2 92.9±0.3
0.4 90.7±0.2 93.0±0.2 92.0±0.9 93.1±0.1 92.8±0.1
0.6 88.2±0.4 90.8±0.2 90.6±0.3 92.9±0.2 92.4±0.2
0.8 87.1±0.5 89.1±0.2 89.3±0.1 89.9±0.3 91.6±0.3
1.0 87.1±1.0 88.7±0.1 89.3±0.4 89.3±0.6 88.2±0.3

Table 4. CIFAR-10 Label Noise



⌘ InfoNCE q = 0.01 q = 0.1 q = 0.5 q = 1.0

0.0 91.1±0.1 91.6±0.1 91.5±0.1 91.8±0.2 90.7±0.1
0.2 89.3±0.1 89.8±0.2 89.7±0.1 90.4±0.1 90.9±0.1
0.4 87.3±0.4 87.7±0.5 87.5±0.2 88.8±0.1 89.0±0.1
0.6 84.5±0.2 85.4±0.2 85.3±0.2 86.6±0.1 86.3±0.2
0.8 80.6±0.1 81.2±0.2 80.3±0.2 82.5±0.2 82.8±0.3
1.0 71.0±0.5 71.2±0.6 71.8±0.4 71.5±0.3 72.7±0.2

Table 5. CIFAR-10 Augmentation Noise

model 20K 50K 100K 200K 500K

InfoNCE (100 epoch) 72.482 75.205 77.161 79.937 82.717
InfoNCE (150 epoch) 72.429 76.13 78.8 80.095 83.082
InfoNCE (200 epoch) 72.429 76.183 78.641 79.94 83.388

RINCE (100 epoch) 73.635 76.685 78.694 81.153 83.505
RINCE (150 epoch) 74.632 77.505 79.064 82.263 83.399
RINCE (200 epoch) 74.253 78.086 79.355 82.368 83.769

Table 6. Top1 accuracy on UCF101 of models trained on ACAV100M.

C.3. Positive Scores and Views, Continue
We extend our analysis of Figure 6 to InfoNCE baseline and discuss the impact of implicit weighting. We can see that the

positive scores in both InfoNCE and RINCE models are correlated to the noisiness of positive pairs.

InfoNCE RINCE

0.694

0.394

0.431

0.706

0.631

0.985

0.976

0.988

0.865

0.868

0.972

0.976

0.819

0.854

0.861

0.605

0.406

0.563

0.702

0.582

0.839

0.858

0.869

0.841

0.824

0.984

0.983

0.960

0.984

0.984

Figure 12. Positive pairs and their scores. The corresponding positive scores are shown below the image pairs. The positive scores
s+ 2 [�1, 1] are output by the trained InfoNCE and RINCE model (temperature = 1). Pairs that have lower scores are visually noisy,
while informative pairs often have higher scores.

We then study the distribution of positive scores and compare the positive scores output by InfoNCE and RINCE on noisy
views. As Figure 13 (a) shows, the positive scores of clean pairs output by RINCE is slightly higher, making the density
of RINCE around score 1.0 larger than InfoNCE. Figure 13 (b) gives a closer look on scores versus noisy views. We can
see that InfoNCE tends to output higher scores for noisy views than RINCE, corroborating our analysis: InfoNCE tends to



maximize the positive score of hard (noisy) pairs. This inherently makes the positive scores of clean pairs lower for InfoNCE,
explaining the discrepancy between InfoNCE and RINCE in (a).
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Figure 13. Comparison between RINCE and InfoNCE. (a) Distribution of Positive Scores for RINCE and InfoNCE; (b) InfoNCE
outputs higher scores for noisy pairs.

C.4. Ablation Study on �

Finally, we provide an ablation study on how � affect the performance of RINCE with CIFAR-10 augmentation noise
experiments. We can see that in both clean and noise setting, RINCE is not sensitive to the choice of � as long as it is not too
large. Therefore, we simply set � = 0.01 for all vision experiments and � = 0.025 for graph experiments.

Noise Rate 0.0 0.4

RINCE (� = 0.01) 91.54 89.65
RINCE (� = 0.05) 91.81 89.81
RINCE (� = 0.1) 91.32 89.9
RINCE (� = 0.2) 90.55 89.69
RINCE (� = 0.4) 90.89 89.39

Table 7. CIFAR-10 Augmentation Noise
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