
Supplementary Material
A. Mathematical Preliminaries
Definition 1 (Contraction on Rn). A function f : Rn 7→ Rn

is called a contraction mapping if there exists a real number
0 ≤ λ < 1 such that for all x and y in Rn,

∥f(x)− f(y)∥ ≤ λ∥x− y∥ (20)

Using the intermediate value theorem for the function
f(x), we can easily see that f(x) is contracting with the
rate 0 ≤ λ < 1 if f satisfies the following:

σmax

(
∂f(x)

∂x

)
≤ λ < 1 (21)

where σmax(A) denotes the largest singular value of a ma-
trix A. Note that the contraction mapping in Rn is closely
related to Lipschitz continuity, and indeed the function that
satisfies (20) with any λ > 0 is called λ-Lipschitz continu-
ous function.

Now, we provide a theorem for discrete stochastic con-
traction, which is slightly modified from the contraction
theorem of stochastic difference equation in [22].

Theorem A.1. [22] Consider the stochastic difference
equation:

xi+1 = f(xi, i) + g(xi, i)wi (22)

where f(·, i) is a Rn 7→ Rn function, g(·, i) is a Rn ×
N 7→ R function for each i ∈ N, and {wi, i = 1, 2, · · · }
is a sequence of independent n-dimensional zero mean unit
variance Gaussian noise vectors. Assume that the system
satisfies the following two hypothesis:

(H1) The function f(·, i) is contracting with factor λ in the
sense of (21) for all i ∈ N.

(H2) Tr(g(x, i)Ig(x, i)) ≤ C, ∀x, i.

Then, for two sample trajectory xi and x̃i that satisfies (22),
we have

E∥xi − x̃i∥2 ≤
2C

1− λ2
+ λ2iE∥x0 − x̃0∥2 (23)

The following corollary is a simple consequence of The-
orem A.1.

Corollary 1. Consider the stochastic difference equation
associated with the data fidelity term:

x′
i+1 = f(xi, i) + σ(xi, i)zi (24)

xi+1 = Ax′
i+1 + b (25)

where the A ∈ Rn×n is a non-expansive linear mapping,
and f(x, i) and σ(x, i) satisfies (H1) and (H2). Then, for

two sample trajectories xi and x̃i that satisfies (22), we
have

E∥xi − x̃i∥2 ≤
2Cτ

1− λ2
+ (λ)

2iE∥x0 − x̃0∥2 (26)

where τ = Tr(ATA)
n .

Proof. After the application of (25), we have

xi+1 = Af(xi, i) + b︸ ︷︷ ︸
f̃(xi,i)

+σ(xi, i)Azi

Therefore, we have

σmax

(
∂f̃(x, i)

∂x

)
≤ σmax(A)σmax

(
∂f(x, i)

∂x

)
= λ

as σmax(A) ≤ 1 for a non-expansive linear mapping. Fur-
thermore, we have

Tr(g(x, i)ATAg(x, i)) = g(x, i)2Tr(ATA)

=
Tr(ATA)

n
C = Cτ

Therefore, we have

E∥xi − x̃i∥2 ≤
2Cτ

1− λ2
+ λ2iE∥x0 − x̃0∥2 (27)

Lemma A.1. Let sθ(xi, i) be a sufficiently expressive pa-
rameterized score function so that

sθ(xi, t) =
∂

∂xi
log p0i(xi|x0) (28)

Then, we have

∂

∂xi
sθ(xi, t) = −

1

b2i
I. (29)

where

b2i =

{
1− ᾱi, (DDPM)
σ2
i − σ2

0 , (SMLD)
(30)

Proof. The forward diffusion is given by

xi = aix0 + biz (31)

where z ∼ N (0, I) and (ai, bi) are defined in (5) and (10)
for DDPM and SMLD, respectively. Using (28), we have



∂

∂xi
(sθ∗(xi, i))

T (32)

=
∂

∂xi

(
∂

∂xi
log p0i(xi|x0)

)T

(33)

=
∂

∂xi

(
∂

∂xi

(
− ∥xi − aix0∥2

2b2i

))T

(34)

=
∂

∂xi

(
− xi − aixi

b2i

)T
(35)

= − 1

b2i
I, (36)

where T denotes the transpose. This concludes the proof.

B. Proof of Theorem 1

Let N be the standard reverse diffusion step when start-
ing from T = 1. Then, the number of discretization step for
our method is given N ′ = Nt0 < N so that t0 can refer to
the acceleration factor. We further define a new index i =
N ′−j to convert the reverse diffusion index j = N ′, · · · , 1
to a forward direction index i = 0, 1, · · · , N ′. This does
not change the contraction property of the stochastic differ-
ence equation. Therefore, without loss of generality, we use
the aforementioned contraction property of stochastic dif-
ference equation for the index i = 0, 1, · · · , N ′. Now, we
are ready to provide the proof.

B.1. DDPM

In DDPM, the discrete version of the forward diffusion
is given by Eq. (5), and the reverse diffusion is given by
eq. (6). Here, zθ(x, i) is trained by

min
θ

EiEx(0)Ez∼N (0,I)

[
∥z − zθ(

√
ᾱix(0) +

√
1− ᾱiz, i)∥2

]
.

(37)

It was shown that zθ(x, i) is a scaled version of the score
function [34]:

sθ(x, i) = −
1√

1− ᾱi
zθ(x, i) (38)

which leads to

xi−1 =
1
√
αi

(
xi + (1− αi)sθ(xi, i)

)
︸ ︷︷ ︸

f(xi,i)

+σiz, (39)

Thus, we have

∂fT (xi, i)

∂xi
=

1
√
αi

(
I + (1− αi)

∂sTθ (xi, i)

∂xi

)
=

1
√
αi

(
1− 1− αi

1− ᾱi

)
I

=
1
√
αi

αi − ᾱi

1− ᾱi
I

=
√
αi

1− ᾱi−1

1− ᾱi
I

Therefore, the contraction rate is given by

λ = max
i∈[N ′]

√
αi

(
1− ᾱi−1

1− ᾱi

)
< 1 (40)

as 0 < αi, ᾱi < 1. Furthermore, we can easily show that

C = n max
i∈[N ′]

(1− ᾱi) = n(1− ᾱN ),

as ᾱi is decreasing with i.

B.2. SMLD: Discrete Version of VE-SDE

In discrete version of VE-SDE, the forward diffusion is
given by (10). The associated reverse diffusion is given by
(11). Thus, we have

∂fT (xi, i)

∂xi
= I + (σ2

i − σ2
i−1)

∂sTθ (xi, i)

∂xi

=

(
1−

σ2
i − σ2

i−1

σ2
i − σ2

0

)
I

=
σ2
i−1 − σ2

0

σ2
i − σ2

0

I

and the contraction rate is given by

λ = max
i∈[N ′]

σ2
i−1 − σ2

0

σ2
i − σ2

0

< 1 (41)

as σi is increasing with i. Furthermore, we can easily show
that

C = n max
i∈[N ′]

σ2
i − σ2

i−1

B.3. DDIM

The DDIM forward diffusion can be set identically to
the forward diffusion of DDPM (5), whereas the reverse
diffusion is given as (7). In fact, with a proper reparame-
terization, one can cast DDIM such that it is equivalent to
the discrete version of VE-SDE without noise terms. More
specifically, if we define the following reparametrization:

x̄i =
xi√
ᾱi

(42)



then (7) becomes

x̄i−1 = x̄i + (σi−1 − σi) zθ(xi, i) (43)

where

σi =

√
1− ᾱi√
ᾱi

(44)

Furthermore, the corresponding score function with respect
to the reparameterization is

sθ(x̄i, i) = −
zθ(xi, i)

σi
(45)

so that we have

x̄i−1 = x̄i − (σi−1 − σi)σisθ(x̄i, i) (46)

The forward diffusion (5) can be equivalently represented
by the reparameterization as:

x̄i = x̄0 + σiz (47)

as α0 = 1. Therefore, we have

∂fT

∂x̄i
(x̄i) =

(
1 +

σi−1 − σi

σi

)
I =

σi−1

σi
I (48)

and the contraction rate is given by

λ = max
i∈[N ′]

σi−1

σi
< 1 (49)

as σi is increasing with i. Furthermore, we can easily show
that C = 0 as there is no noise term.

C. Proof of Theorem 2
For some of the proofs, we borrow more tight inequal-

ity to obtain the result. In fact, the inequality of stochastic
contraction

ε̄0,r ≤
2Cτ

1− λ2
+ λ2N ′

ε̄N ′ (50)

is a rough estimation of recursive inequality [22]

ε̄j−1,r ≤ λ2
j ε̄j,r + 2Cjτ, (51)

where ε̄j,r denotes the estimation error between reverse
conditional diffusion path down to j. Accordingly, we have

ε̄0,r ≤ ε̄N,r

N∏
j=0

λ2
j +

N∑
j=1

(
2Cjτ

j−1∏
i=1

λ2
i

)
, (52)

which is reduced to (50) when λj and Cj are uniformly
bounded by λ and C, respectively.

Now, our proof strategy is as follows. We specify reason-
able conditions on {βi} or {σ2

i }, which are satisfied by the
existing DDPM, SLMD, and DDIM scheduling approaches.
Then, for any 0 < µ ≤ 1, our goal is to to show that there
exists N ′ such that

ε̄0,r ≤ µε0,

and N ′ decreases as ε0 gets smaller.

C.1. DDPM

Without loss of generality, we assume that ground truth
image and the corrupted image are normalized within range
[0, 1], i.e. x, x̄ ∈ [0, 1]n. Then, we have

ε0 = ∥x− x̃∥2 ≤ n. (53)

We choose N ′ such that

N ′βN ′ ≥ 2 log

(
4n

µε0

)
(54)

N ′βN ′ ≤ µε0
4nτ

. (55)

We separately investigate each term in (52). First, from the-
orem 1,

ε̄N,r = a2N ′ε+ 2b2N ′n

= ᾱN ′ε0 + (1− ᾱN ′)2n

= 2n+ ᾱN ′(ε0 − 2n)

≤ 2n

where the last inequality comes from (53). Subsequently,

N ′∑
j=1

(
2Cjτ

j−1∏
i=1

λ2
i

)

=

N ′∑
j=1

(
2n(1− αj)τ

j−1∏
i=1

λ2
i

)

≤ 2nτ

N ′∑
j=1

βj · 1

≤ 2nτN ′βN ′ ≤ µε0
2

.

where the first inequality comes from
∏j−1

i=1 λ2
i ≤∏j−1

i=1 1 ≤ 1 and the last equality is from (55). Therefore,

ε̄0,r ≤ ε̄N ′,r

N ′∏
j=0

λ2
j +

N ′∑
j=1

(
2Cjτ

j−1∏
i=1

λ2
i

)

≤ 2n · e−
N′β

N′
2 +

µε0
2

(56)

≤ 2n · µε0
4n

+
µε0
2
≤ µε0,



where the third inequality holds by (54), and the inequality
in (56) comes from Lemma C.1 (see below). Furthermore,
from (55), we can see that N ′ becomes smaller for a smaller
ε0. This concludes the proof of DDPM.

Lemma C.1.
N ′∏
j=1

λ2
j ≤ e−

N′β
N′

2 .

Proof of Lemma C.1.

N ′∏
j=1

λ2
j =

N ′∏
j=1

αj ·
(1− ᾱj−1)

2

(1− ᾱj)2

≤
N ′∏
j=1

αj

≤

 1

N ′

N ′∑
j=1

αj

N ′

=

1− 1

N ′

N ′∑
j=1

βj

N ′

=

(
1− βN ′

2

)N ′

where the first inequality comes from ᾱj = ᾱj−1αj ≤
ᾱj−1, and the second inequality is the inequality of arith-
metic and geometric means, and the third equality is from
the linear increasing βj from β0 = 0. Finally, using

ex ≥
(
1 +

x

N

)N
for N ≥ 1, |x| ≤ N (57)

we have

N ′∏
j=1

λ2
j ≤ e−

Nβ
N′
2 ,

This concludes the proof.

C.2. SMLD

Assume that the minimum and maximum values of vari-
ance satisfy the following:

σ2
min <

µ
3
2 ε0
8n

(58)

σ2
max >

µε0
4n

. (59)

Then, using (58),

log

(
2
√
µ

)
< log

(
µε0

4nσ2
min

)
,

and thus

log(2/
√
µ)

log(σ2
max/σ

2
min)

<
log(µε0/4nσ

2
min)

log(σ2
max/σ

2
min)

. (60)

In addition, from (59), we have

µε0
4nσ2

min

<
σ2
max

σ2
min

,

and hence

log(µε0/4nσ
2
min)

log(σ2
max/σ

2
min)

< 1. (61)

Combining (60) with (61), we arrive at

log(2/
√
µ)

log(σ2
max/σ

2
min)

<
log(µε0/4nσ

2
min)

log(σ2
max/σ

2
min)

< 1. (62)

Now, we can choose N ′ such that it satisfies the following
conditions:

N ′ − 1

N − 1
≥

log(2/
√
µ)

log(σ2
max/σ

2
min)

N ′ − 1

N − 1
≤ log(µε0/4nσ

2
min)

log(σ2
max/σ

2
min)

(63)

This leads to the following bounds

(
σ2
max

σ2
min

)N′−1
N−1

≥ 2
√
µ

nσ2
min

(
σ2
max

σ2
min

)N′−1
N−1

≤ µε0
4

.

(64)

On the other hand, in the geometric scheduling of noise, for
all i, we have

λ = σ2
min

(
σ2
max

σ2
min

) i−1
N−1

/
σ2
min

(
σ2
max

σ2
min

) i−2
N−1

(65)

=

(
σ2
min

σ2
max

) 1
N−1

and

C = nmaxσ2
i

(
1−

σ2
i−1

σ2
i

)
= nσ2

N ′(1− λ). (66)

where

σ′
N = σmin

(
σmax

σmin

)N′−1
N−1

.

Note that from (64),

2nσ2
N ′ = 2nσ2

min

(
σ2
max

σ2
min

)N′−1
N−1

≤ µε0
2

, (67)



and (
σ2
min

σ2
max

) 2(N′−1)
N−1

≤ µ

4
. (68)

Hence, by plugging in (66) to (50), we have

ε̄0,r ≤
2Cτ

1− λ2
+ λ2N ′

ε̄N ′

=
2nσ2

N (1− λ)τ

(1 + λ)(1− λ)
+

(
σ2
min

σ2
max

) 2N′
N−1

(ε0 + 2nσ2
N ′)

≤ 2nσ2
N ′

τ

1 + λ
+

(
σ2
min

σ2
max

) 2(N′−1)
N−1

(ε0 + 2nσ2
N ′)

≤ µε0
2

+
µ

4

(
ε0 +

µε0
2

)
≤ µε0

2
+

µ

4
(ε0 + ε0)

= µε0,

where the third inequality comes from the bounds in (67),
(68), and the fact that τ = tr(ATA)

n < 1 for a non-expansive
linear mapping A.

Finally, we can easily see that the value N ′ satisfying
(63) decreases as ε0 decreases.

C.3. DDIM

In DDIM, we have Cj = 0 for Eq. (52). Let σ0 and N ′

satisfy the following:

σ2
0 ≤

µε0
4n

(69)

σ2
N ′ ≥

ε0
2n

(70)

Then, we have

ε̄0, r ≤ ε̄N,r

N∏
j=1

λ2
j

≤ (ε0 + σ2
N ′2n) ·

σ2
0

σ2
N ′

≤ µε0

where the second equality comes from λj = σj−1/σj and
the last equality comes from Eqs. (69) and (70).

We can also easily see that the minimum value N ′ satis-
fying (70) decreases as ε0 decreases, as σ2

i is an increasing
sequence in DDIM.

D. Implementation detail
In this section, we provide detailed explanation of dis-

crete version of CCDF for each application. Again, the
number of discretization step for our method is given N ′ =
Nt0 < N where t0 refers to the acceleration factor.

D.1. Super-resolution and Image Inpainting

For these problems, we employ the discretized version of
the VP-SDE, which has shown impressive results on con-
ditional generation [5, 8]. Namely, we use DDPM [10],
with several strategies introduced in improved DDPM (ID-
DPM) [20] for both training the score function and for re-
verse diffusion procedure.

The modified reverse diffusion is given by

x′
i−1 =

1
√
αi

(
xi + (1− αi)sθ(xi, i)

)
+
√
σiz, (71)

where σi is given by

σi = exp(v log βi + (1− v) log β̃i), (72)

letting model variance to be learnable in a range [βi, β̃i],
where β̃i is given by β̃i =

1−ᾱi−1

1−ᾱi
βi. In (72), v is the learn-

able parameter so that it can be trained using the variational
lower-bound penalty introduced in [10, 20].

Specifically, v and the score function sθ are trained using
the following objective

Ltotal(θ, v) = Lsimple(θ) + λLV LB(v), (73)

where Lsimple(θ) is given in (37) and we apply stop-
gradient for the LV LB so that the gradient of the loss con-
tributes only to estimating the model variance.

For the training of score function, we use a U-Net ar-
chitecture as used in [20] with the loss function as given
in (73). Multi-headed attention [36] was used only at the
16×16 resolution. Linear beta noise scheduling [10] with
βmin = 0.0001 and βmax = 0.02 were used, with N = 1000
discretization. We train the model with a batch size of 2,
and a static learning rate of 1e-4 with Adam [14] opti-
mizer for 5M steps. Exponential moving average (EMA)
rate of 0.9999 was applied to the model.

For super-resolution, we define a blur kernel hD which
is defined by successive applications of the downsampling
filter by a factor D, and upsampling filter by a factor D.
This can be represented as a matrix multiplication:

Px′ := hD ∗ x′. (74)

where x′ denotes intermediate estimate from the reverse
diffusion. Then, we use the following data consistency iter-
ation:

xi = (I − P )x′
i + x̂i, (75)

where xi is the current estimate, and x̂i is the forward prop-
agated image from the initial measurement x̂(0):

x̂i =
√
ᾱix̂0 +

√
1− ᾱiz (76)



Therefore, we have

A = I − P , b = x̂i.

We can easily see that σmax(A) ≤ 1 for the normalized
filter hD.

Similarly, for the case of image inpainting, P is just a
diagonal matrix with 1 at the measured locations and 0 on
the unmeasured locations so that σmax(A) ≤ 1.

The resulting pseudo-code implementation of the algo-
rithm is given in Algorithm 1.

Algorithm 1 Accelerated Super-resolution / inpainting (VP,
Markov)

Require: x0, x̂0, N
′, {αi}N

′

i=1, {σi}N
′

i=1, sθ
1: z ∼ N (0, I)
2: xN ′ ←

√
ᾱN ′x0 +

√
1− ᾱN ′z ▷ Forward diffusion

3: for i = N ′ to 1 do ▷ Reverse diffusion
4: x′

i−1 ← 1√
αi
(xi + (1− αi)sθ(xi, i))

5: z ∼ N (0, I)
6: xi−1 ← x′

i−1 + σiz ▷ Unconditional update
7: z ∼ N (0, I)
8: x̂i ←

√
ᾱix̂0 +

√
1− ᾱiz

9: xi−1 = (I − P )xi−1 + x̂i

▷ Measurement consistency
10: end for
11: return x0

D.2. DDIM for Super-resolution/Inpainting

Note that we can use the same score function trained for
DDPM, and use it in DDIM sampling [30]. Here, we study
the effect on combining DDIM together with the proposed
method to achieve even further acceleration. All we need
to do is modify the unconditional update step, arriving at
Algorithm 2.

D.3. MRI reconstruction

For the task of MRI reconstruction, we ground our work
on Score-MRI [6], and modify the previous algorithm for
our purpose. The algorithm is given in Algorithm 3. Specif-
ically, we use variance exploding (VE-SDE) with predictor-
corrector (PC) sampling which gives optimal results for MR
reconstruction. For the step size of the corrector (Langevin
dynamics) step, we use the following

ϵi = 2r
∥z∥2

∥sθ(xi, σi)∥2
, (77)

Algorithm 2 Accelerated Super-resolution / inpainting (VP,
markov) + DDIM

Require: x0, x̂0, N
′, {αi}N

′

i=1, {σi}N
′

i=1, sθ
1: z ∼ N (0, I)
2: xi ←

√
ᾱix0 +

√
1− ᾱiz ▷ Forward diffusion

3: for i = N0 to 1 do ▷ Reverse diffusion
4: xi−1 ← 1√

αi
xi+(

1−ᾱi√
αi
−
√

(1− ᾱi)(1− ᾱi−1)
)
sθ(xi, i)

▷ Unconditional update
5: z ∼ N (0, I)
6: x̂i ←

√
ᾱix̂0 +

√
1− ᾱiz

7: xi−1 = (I − P )xi−1 + x̂i

▷ Measurement consistency
8: end for
9: return x0

with r = 0.16 set as constant. For training the score func-
tion, we use the following minimization strategy:

min
θ

Et∼U(η,1)Ex(0)∼p0
Ex(t)∼N (x(0),σ2(t)I)

[
(78)∥∥∥∥σ(t)sθ(x(t), t)− x(t)− x(0)

σ(t)

∥∥∥∥2
2

]
,

with η = 1e-5, and

σ(t) = σmin

(
σmax

σmin

)t

, (79)

with σmin = 0.01, σmax = 378. We construct a modified
U-Net model introduced in [34], namely ncsnpp. Adam
optimizer is used for optimization, with a static learning rate
of 2e-4 for 5M steps. EMA rate of 0.999 is used, and
gradient clipping is applied with the maximum value of 1.0.

In compressed sensing MRI, the subsampled k-space
data y is obtained from underlying image x as:

y = DFx (80)

where F denote the Fourier transform and its inverse, D is
a diagonal matrix indicating the k-space sampling location
and y is the original zero-filled k-space data.

The associated data consistency imposing operator is
then defined by

xi = (I − F−1DF )x′
i + F−1Dy (81)

where F−1 is the inverse Fourier transform. Therefore, we
have

A = I − F−1DF , b = F−1Dy.

Again, we can easily see σmax(A) ≤ 1 as the Fourier trans-
form is orthonormal.



Algorithm 3 Accelerated MR reconstruction (VE, PC)

Require: x0,y, N
′, {σi}N

′

i=1, {ϵi}N
′

i=1, sθ
1: z ∼ N (0, I)
2: xN ′ ← x0 + σN ′z ▷ Forward diffusion
3: for i = N ′ to 1 do ▷ Reverse diffusion
4: x′

i−1 ← xi + (σ2
i − σ2

i−1)sθ(xi, σi)
5: z ∼ N (0, I)
6: xi−1 ← x′

i−1 +
√
σ2
i − σ2

i−1z ▷ Predictor

7: xi−1 = (I − F−1DF )xi + F−1Dy
▷ Measurement consistency

8: x′
i−1 ← xi−1 + ϵisθ(xi, σi)

9: z ∼ N (0, I)
10: xi−1 ← x′

i−1 +
√
2ϵiz ▷ Corrector

11: xi−1 = (I − F−1DF )xi + F−1Dy
▷ Measurement consistency

12: end for
13: return x0

The corresponding pseudo-code implementation is
shown in Algorithm 3.

All training and inference algorithms were implemented
in PyTorch, and were performed on a single RTX 3090
GPU.

E. Additional Experiments

E.1. Super-resolution

Comparison study. In Fig. E.1, we compare the results
of super-resolution using fairly large number of diffusion
steps, as opposed to using only 20 number of diffusion steps
as shown in Fig. 4. This is a region where ILVR is known
to perform well, as opposed to the few-step setting. While
in Fig. E.1, ILVR uses 1000 steps of diffusion, the proposed
method only uses 100, 200, and 300 steps of diffusion for
×4,×8, and ×16, respectively. Nevertheless, the quality of
reconstruction does not degrade, thanks to the contraction
property of CCDF.
Incorporation of DDIM. We provide additional SR results
using CCDF + DDIM. In Figure E.2, we show an experi-
ment with the FFHQ dataset, where we compare the com-
bination of ILVR + DDIM, and proposed method + DDIM.
For ILVR + DDIM, in order to reduce the number of itera-
tions, we choose larger discretization steps used in DDIM.
For the proposed method, we fix N = 50, and reduce the
value of t0 to achieve less iterations. In the figure, we con-
firm that our method can be used together with DDIM to
create high-fidelity samples with as small as 5 reverse dif-
fusion iterations, even when it comes down to extreme cases
of SR ×8 or SR ×16. Additionally, we observe that the re-
sults with t0 ≤ 0.5 is superior to the t0 = 1.0 counterparts,
again confirming our theory.

Figure E.1. Comparison on SR task (×4, ×8, ×16 for the 1st,
2nd, and 3rd row): (a) ESRGAN [37], (b) ILVR [5] (1000 steps),
(c) proposed method (100, 200, 300 steps for ×4, ×8, ×16 SR),
(d) Ground Truth

SR method 5 10 25 50

FFHQ

×4
ILVR

+DDIM 120.53 114.61 87.15 81.85

proposed
+DDIM 72.34 69.39 78.83 82.72

×8
ILVR

+DDIM 147.44 115.30 101.37 93.72

proposed
+DDIM 91.84 85.43 87.43 94.89

×16
ILVR

+DDIM 147.44 115.30 101.37 93.72

proposed
+DDIM 91.84 85.43 87.43 94.89

AFHQ

×4
ILVR

+DDIM 63.79 55.57 40.22 30.57

proposed
+DDIM 17.57 17.19 20.87 30.22

×8
ILVR

+DDIM 106.94 67.06 51.75 45.96

proposed
+DDIM 35.03 31.70 35.62 45.17

×16
ILVR

+DDIM 163.98 94.68 69.60 65.33

proposed
+DDIM 70.02 59.01 49.36 64.61

Table E.1. FID(↓) scores on FFHQ and AFHQ test set for SR task
with DDIM by varying the number of iterations.

The same trend can also be seen via quantitative met-
rics in Table E.1. Using limited number of diffusion steps,
FID score in the case of ILVR+DDIM grows exponentially,



Figure E.2. Results on SR task of FFHQ dataset with proposed
method + DDIM. Numbers on top indicate number of reverse dif-
fusion iterations. (a) LR image, (b) ground truth, (c) ILVR +
DDIM, (d) CCDF + DDIM.

as we decrease the number of steps taken. Contrarily, our
method is able to improve the metric by quite a margin, as
opposed to using full diffusion with 50 steps in total. This
trend is indeed similar to the experiments performed with
DDPM.

Experiments with ImageNet. ImageNet [7] contains di-
verse categories of natural images, and are known to be
much harder to model, due to its highly multimodal nature.
We try to examine if CCDF scales even to this challeng-
ing task, using a pre-trained model provided in the guided-
diffusion github repository3. As with other experiments
with FFHQ or AFHQ dataset, we train an ESRGAN model
for each SR factor, and use it as our initialization strategy.
In Fig. F.2, we can see that our CCDF strategy outperforms
ILVR using full reverse diffusion, and also vastly improves
the image quality of ESRGAN, which is our initialization.

t0 0.05 0.1 0.2 0.5 0.75 1.0 [34]
Box 96 46.03 45.93 45.99 46.14 48.05 48.61

Box 128 50.41 50.05 49.77 51.65 54.49 59.27
Box 160 61.77 59.62 57.99 61.04 67.50 78.50

Table E.2. FID(↓) scores on FFHQ test set for inpainting task
with varying t0 values. t0 = 1.0 is the baseline method without
any acceleration used in [34]. Numbers in boldface, and underline
indicate the best, and the second best scores.

E.2. Inpainting

Dependence on t0. As in Table 2, we compare the FID
score of reconstructions for the inpainting task, as we vary
the t0 values in table E.2. We notice similar results from
the SR task, in the sense that there always exist t0 ∈ (0, T )
which gives higher scores than using full diffusion. With
relatively small boxes, we see that t0 = 0.1 is optimal,
whereas we typically need more diffusion steps for larger
boxes.

Figure E.3. Comparison on inpainting task: (a) Input image, (b)
SN-PatchGAN [40], (c) score-SDE [34] using 1000 steps from
T = 1, (d) CCDF using 200 steps from t0 = 0.2, (e) Ground
Truth.

Comparison study. We compare the proposed CCDF strat-
egy with SN-PatchGAN [40], and score-SDE [34] using
1000 steps in Fig. E.3. For SN-PatchGAN in Fig. E.3 (b),
we often see highly unrealistic details e.g. near the mouth.
Note that SN-patchGAN serves as the initialization point
for CCDF in inpainting. Leveraging this imperfect initial-
ization, the proposed method is able to provide reconstruc-
tions that are highly realistic, as can be seen in fig. E.3 (d).
It is also notable that score-SDE using full diffusion more
often than not produces results that are incoherent with the
known regions (see second row of Fig. E.3 (c)), while the
proposed method stably outputs coherent results.
Ablation study. We perform an ablation study compar-
ing the effect of different initialization strategy. Table E.3

3https://github.com/openai/guided-diffusion

https://github.com/openai/guided-diffusion


Figure E.4. Ablation study on using different initializations for
forward diffusion (×6 1D Gaussian sampling). (a) Vanilla ini-
tialization, (b) corresponding results with the proposed method.
(c) NN initialization, (d) corresponding results with the proposed
method.

SR t0 = 0.1 0.2 0.5 1.0

FFHQ

×4 vanilla 78.39 66.77 64.25 63.14
NN init. 60.90 60.91 64.04 63.31

×8 vanilla 116.42 93.06 82.39 78.91
NN init. 78.13 75.76 79.34 77.34

×16 vanilla 184.70 135.20 96.15 92.32
NN init. 101.79 92.59 88.09 88.49

AFHQ

×4 vanilla 19.14 18.66 18.08 18.70
NN init. 15.53 17.14 19.06 18.10

×8 vanilla 48.87 39.88 33.28 34.84
NN init. 33.47 32.30 33.65 33.50

×16 vanilla 96.01 72.22 47.42 47.28
NN init. 63.27 51.13 44.18 45.17

Table E.3. FID(↓) scores for SR tasks with different initialization
strategies.

shows the difference in the results when using vanilla ini-
tialization with the corrupted image, and NN initializa-
tion. We see that with all t0, NN initialization performs
marginally better than vanilla initialization. The difference
becomes clearer as we decrease the value of t0 to 0.1. The
same ablation study was performed also for MRI recon-

struction task, and is illustrated in Figure E.4. We see simi-
lar trend as in the SR task.

Furthermore, we provide additional qualitative results of
each task on various datasets, focusing mainly on showing
the trend of reconstruction results as we vary the value of t0.
In Figure F.3, we compare the achievable image quality by
fixing the number of reverse diffusion steps to 20. Consis-
tent with what we saw in Figure 4, we see that our method
largely outperforms the other diffusion model-based meth-
ods. In Figure F.4, Figure F.5 respectively, we see that we
can stably arrive at a feasible solution with different values
of t0 ∈ [0.1, 0.5], typically requiring higher values of t0 for
severer degradation.

F. Validity of assumption
In Lemma A.1, we assumed that sθ(xi, t) =

∂
∂xi

log p0i(xi|x0). In this section, we briefly show that
the assumption is valid. In the theoretic side, [1] showed
that given an optimal reconstruction function r∗σ(xt) trained
with denoising autoencoder loss asymptotically behaves as

r∗σ(xt) = xt + σ2 ∂ log p(xt)

∂xt
+ o(σ2), σ → 0

s∗θ(xt) =
r∗σ(xt)− xt

σ2
=

∂ log p(xt)

∂xt
+ o(1), σ → 0,

where the equation emphasizes the behavior of the optimal
score function, regarding how it was parameterized. This
asymptotic behavior hints that the error will be small, es-
pecially when σ approaches zero. In our case, σ → 0 as
t→ 0, and hence the behavior holds near t = 0.

Figure F.1. Average value of ∥sθ(xt, t) − ∂
∂xt

log p0t(xt|x0)∥22,
and the norm of ∥sθ(xt, t)∥22 at time t, on fastMRI 320×320 test
set (1K samples).

In order to numerically validate such error, we conducted
an experiment to calculate the actual average error norm, il-



lustrated in Fig. F.1. Here, we see that the error norm mostly
stays at very low values across the range. We do observe
that the magnitude of error inevitably increases when the
noise level is too large, so the error grows where t > 0.5.
Nevertheless, we note that most of our contraction analysis
stays in the t ∈ [ϵ, 0.5] regime, and hence the assumption
made in Lemma A.1. is practical.



Figure F.2. Results of SR task on ImageNet256 validation dataset. (a) LR image, (b) ground truth, (c) ESRGAN, (d) ILVR (1000 steps),
(e) CCDF (100, 200, 300 steps for ×4, ×8, ×16 SR, respectively.)



Figure F.3. Results of super-resolution on FFHQ 256×256 data. The first, second and third row denote ×4 SR, ×8 SR, and ×16 SR,
respectively. (a) LR input, (b) Ground Truth, (c) ESRGAN [37], (d) SR3 [25] with 20 diffusion steps (N = 20,∆t = 0.05), (e) ILVR [5]
with 20 diffusion steps(N = 20,∆t = 0.05), (f) proposed method (CCDF) with 20 diffusion steps (N = 100, t0 = 0.2).



Figure F.4. Results of super-resolution on FFHQ 256×256 data. The first, second and third row denote ×4 SR, ×8 SR, and ×16
SR, respectively. (a) LR input, (b) Reference, (c) ESRGAN [37], (d) proposed method (CCDF) with varying t0 values, and (e) ILVR
(t0 = 1.0) [5].



Figure F.5. Additional results of inpainting on FFHQ 256×256 data. The first, second and third row denote masks of size 96×96, 128×128
and 160 × 160, respectively. (a) Masked image, (b) SN-patchGAN [40], (c) proposed method (CCDF) with varying t0 values, and (d)
Score-SDE (t0 = 1.0) [34]
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