
ABO: Dataset and Benchmarks for Real-World 3D Object Understanding

(Supplemental Material)

1. Dataset Properties

Metadata Visualization We visualize additional products
according to their metadata attributes in Figure 1. For each
attribute (unit count and weight), each row depicts prod-
ucts that fall into that label (for categorical attributes) or bin
(for continuous-valued attributes). For continuous-valued
attributes, products within the same row are ordered from
lowest to highest.

2. Dataset Organization

In this work we used ABO to derive benchmarks for
different tasks such as 3D reconstruction, material estima-
tion, and multi-view retrieval. Table 1 outlines how each
data subset in ABO is used at both train and test time.
“No-BG Renders” refers to the white-background rendered
dataset of ABO objects described in Section 4.1 of the main
text, while “BG Renders” refers to the Material Estimation
Dataset described in Section 3 of the main text.

3. 6DOF Pose Optimization

Instance Masks We use instance masks generated both
from MaskRCNN [6] trained on LVIS [5] as well as
PointRend [7] trained on COCO [9]. Both model check-
points were obtained from the Detectron2 repository1. We
kept predicted masks from all categories with a confidence
score greater than 0.1.

Pose Optimization For each instance mask, we initialize
24 different runs with random rotations and optimize R and
T for 1, 000 steps using the Adam optimizer with a learning
rate of 1e-2. We parameterize the rotation matrix using the
symmetric orthogonalization procedure of [8]. At the end
of the 24 runs, we pick the pose that has the lowest loss and
validate its correctness via a human check.

4. Single-View 3D Reconstruction Evaluation

View-Space Evaluations Since view-space predictions can
be scaled and z-translated simultaneously while preserving

1https://github.com/facebookresearch/detectron2

Figure 1. Metadata visualization. Catalog image samples for
“unit count” and “weight” metadata attributes. For each product
we show its main image.

3D Recon. Material Est. Retrieval

Tr
ai

n No-BG Renders
BG Renders X X
Catalog Images X

Te
st

No-BG Renders X
BG Renders X X
Catalog Images X X

Table 1. ABO data subsets used in each benchmarking exper-

iment at both train and test time. “BG” and “No-BG” Ren-
ders refer to renderings from 3D models in ABO with and without
backgrounds.

the projection onto the camera, we must solve the depth-
ambiguity to align the predicted and ground truth (GT)
meshes for benchmarking. We use known camera extrin-
sics to transform the GT mesh into view-space, and align it
with the predicted mesh by solving for a Chamfer-distance
minimizing depth. In practice, we normalize average ver-
tex depths for each mesh independently and then search
through 51 candidate depths. We compare the predicted and
GT meshes after alignment following the evaluation proto-
col in [2,3] and report Chamfer distance and Absolute Nor-
mal Consistency. Since Chamfer varies with the scale of
the mesh, we follow [2, 3] and scale the meshes such that
the longest edge of the GT mesh bounding box is of length
10.

Canonical-Space Evaluations To evaluate shapes pre-

1



Chamfer (#) Abs. Normal Consistency (")

3D R2N2 [1] 1.97 0.55
OccNets [11] 1.19 0.70
GenRe [13] 1.61 0.66
Mesh R-CNN [4] 0.82 0.62

Table 2. 3D reconstruction on ABO test split. Chamfer distance
and absolute normal consistency averaged across all categories

dicted in canonical space, we must first align them with
the GT shapes. Relying on cross-category semantic align-
ment of models in both ShapeNet and ABO, we use a single
(manually-set) rotation-alignment for the entire data. We
then solve for relative translation and scale, which remain
inherently ambiguous, to minimize the Chamfer distance
between the two meshes. In practice, we search over a 34

grid of candidate scale/translation after mean-centering (to
vertex centroid) and re-scaling (via standard deviation of
vertex distances to centroid) the two meshes independently.
Note that R2N2 [1] predicts a voxel grid so we convert it
to a mesh for the purposes of benchmarking. Marching
Cubes [10] is one such way to achieve this, however, we
follow the more efficient and easily batched protocol of [3]
that replaces every occupied voxel with a cube, merges ver-
tices, and removes internal faces.

Additional Qualitative Examples We show additional re-
constructions of ABO objects from the best performing
single-view 3D reconstruction method, Mesh R-CNN, and
the method that claims to be category-agnostic, GenRe in
Figure 2. We find that both methods generally fail to recon-
struct objects with thin structures, but that the failure occurs
in different ways for each method. GenRe simply does not
reconstruct them, whereas Mesh R-CNN produces a recon-
struction that qualitatively appears more like the 3D convex
hull of the object.

Quantitative Evaluation on Test Split As the focus of this
work was to measure the domain gap of ShapeNet-trained
3D reconstruction methods to ABO, we evaluated recon-
struction performance for all 3D models in ABO that came
from ShapeNet categories. To facilitate future research that
may want to train 3D reconstruction methods using ABO
and compare to ShapeNet trained methods, we generate a
train/val/test split (80%/10%/10%) that we release along
with the dataset. We also report the performance (averaged
across all categories) of each method on this test split in
Table 2.



GenRe Mesh RCNNInput Image
GenRe Mesh RCNNInput Image

Figure 2. Additional qualitative 3D reconstruction results for GenRe and Mesh R-CNN. The first four rows display ABO objects that
overlap with common ShapeNet categories, such as cabinet, chair and table. The bottom four rows display reconstructions for ABO objects
from categories not represented in ShapeNet.



5. Material Estimation

Dataset Curation We use the Material Estimation Dataset
outlined in the main text, omitting object with transparen-
cies, resulting in 7,679 models. We split the 3D models into
a non-overlapping train/test set of 6,897 and 782 models,
respectively. To test generalization to new lighting condi-
tions, we reserve 10 out of 108 HDRI environment maps
for the test set only.

Network Details A visualization of the single-view mate-
rial estimation network (SV-net) and multi-view network
(MV-net) can be found in Figure 3 (middle and bottom,
respectively). The MV-net uses camera poses to establish
pixel-level correspondences. Given a pixel p in one view-
point with image coordinate x and depth z, the image coor-
dinate x0 of the its corresponding pixel in another viewpoint
can be computed as x0 = KRK�1x + Kt/z, where K is
the camera intrinsic matrix, R and t are the rotation and
translation between the two viewpoints. Some pixels in one
view can be occluded and hence not visible in other views.
These can be determined by using a depth-based occlusion
test. We fill these pixels using values from the reference
view.

Full Texture Map Reconstruction Using per-view pre-
dicted material maps, we can also generate a full textured
PBR model. This is achieved by back-projecting the pre-
dicted material maps to the UV domain and using a learned
network to aggregate and smooth the predictions. Figure 4
shows the full UV map reconstruction pipeline.

Figure 3. Top: Encoder-decoder architecture. Encoder uses a
ResNet-34 (conv1-conv5) backbone. KxK-N-M-X denotes a dou-
ble convolution block of KxK filter, N input channels, M interme-
diate channels, and X output channels. We use BatchNorm and
leaky ReLU. Middle: Single-view baseline. Bottom: Multi-view
baseline. Given a reference view, neighboring views are selected
and projected to the reference view and passed as input to the net-
work.

Figure 4. Pipeline for full UV map prediction. Per-view pre-
dictions are back projected onto the UV and fed to an encoder-
decoder network for smoothing and aggregation.



6. Multi-View Cross-Domain Object Retrieval

Dataset Curation For this task, we used product type an-
notations to focus only on rigid objects, removing items
such as garments, home linens, and some accessories (cell-
phone accessories, animal harnesses, cables, etc.). As the
set of products beyond just those with 3D models are likely
to contain near-duplicates (i.e. different sizes of the same
shoe), we then applied a hierarchical Union-Find algorithm
for near-duplicate detection and product grouping, based
on shared imagery as a heuristic. We considered near-
duplicates as correct matches of a single instance and thus
assigned a unique instance id to all near-duplicate list-
ings. Product groups are sets of such instances that are
from product lines that may share design details, materi-
als, patterns and thus may have common images (close-up
detail of fabric, fact sheet image, ...). Consequently, we en-
sured that all instances in a group are assigned to the same
data split (train, val or test). The val and test sets contain
only instances with 3D models and, while their catalog im-
ages compose their respective target set (val-target and test-
target), we use rendered images as queries (val-query and
test-query).

Dataset Curation Statistics The hierarchical Union-Find
algorithm yielded 29, 988 groups of 50, 756 instances, of
which 1, 334 have 3D models (5, 683 instances). We then
sampled groups accounting for 836 instances with 3D mod-
els for the test set, using their combined 4, 313 catalog im-
ages as test-target images and sampled 8 rendered views for
each of the environment maps as test-query images. Again,
we sampled groups with 854 of the remaining instances
with 3D models for the validation set, using catalog images
(4, 707) as val-target and 8 rendered images per envmap as
val-query. We used the rest of the instances as the train set:
49, 066 instances (3, 993 with 3D model), 187, 912 catalog
images and 110, 928 rendered images (298, 840 total).

Implementation Details Train images are pre-processed by
the following: square padding, resize to 256x256, random
resized crop of 227x227 (scale between 0.16 and 1 and ratio
between 0.75 and 1.33) and random horizontal flip (p =
0.5). Test images are padding to square, resized to 256x256
and center cropped to 227x227.

The trunk used is ResNet-50 pre-trained on ImageNet,
leading to a 2048D vector. We did not freeze these weights,
including the BatchNorm parameters. The embedding mod-
ule is a LayerNorm normalization followed by linear pro-
jection to 128D embedding. The batch sampler is class-
balanced and domain-balanced. Domain-balancing is im-
plemented as a hierarchical sampling: we first sample N
classes with rendered images and N classes without, then
sample K images for each class among all available im-
ages for the class, leading to batches of 2NK samples. For

NormSoftmax and ProxyNCA we used batches of 32 sam-
ples, 1 sample per class, 16 classes with rendered images
and 16 without. For all other methods we used batches of
256 samples, 4 samples per class, 64 classes with rendered
images and 64 classes without.

One epoch consists of 200 batches sampled from the
above procedure. We trained the models for 1000 epochs,
using early stopping when no improvements on the valida-
tion accuracy are found for over 250 consecutive epochs.
The epoch for testing is selected based on the maximum val-
idation Recall@1 for validation. We used 8 workers for data
loading on a AWS p3.8xlarge instance (32 cores, 4 Nvidia
V100 GPUs). As [12], we did not use tuple mining within a
batch. The embeddings are normalized before indexing and
querying. We used Recall@1 using val-query rendered im-
ages as queries against val-target catalog images as the val-
idation metric, computing it at every even epoch. RMSProp
with a learning rate 1e�6, weight decay 1e�4, and momen-
tum 0.9 is used to optimize both the trunk and mebedding
layers. For metric losses, where applicable, the learning rate
is optimized via hyperparameter optimization.

Hyperparameters are estimated by 30 runs of Bayesian
hyperparameter optimization for 100 epochs, using the im-
plementation of Powerful-Benchmarker, the epoch is cho-
sen on the full run after optimization:

• Contrastive. Pos margin: 0.5287; Neg margin: 1.0523;
Epoch: 614

• Multi-similarity. Alpha: 0.0240; Beta: 49.1918;
Base: 0.5567; Epoch: 76

• NormSoftmax. Temperature: 0.0776; Metric loss
learning rate: 0.0013; Epoch: 448

• NTXent. Temperature: 0.0665; Epoch: 114

• ProxyNCA. Softmax scale: 5.5915; Metric loss learn-
ing rate: 0.0010; Epoch: 566

• Triplet. Margin: 0.0743; Epoch: 706

Additional Metrics Tables 3 and 4 provide a more com-
plete version of Table 5 from the main manuscript. In addi-
tion to Recall@k, we also report mean average precision
(MAP), mean average precision at R (MAP@R) and R-
Precision as desribed and implemented by [12]. These met-
rics provide additional insights compared to recall, as they
give higher value to retrieval results with correct rankings
and having as many correct results as possible in the first
ranks.

In Table 3, we compare the results when using ren-
dered images of test classes as queries, against the union
of catalog images of test classes and catalog images of train
classes. In Table 4, we instead compare the results when
using catalog images of test classes as queries, against the
same union of catalog images of test classes and catalog



Loss Recall@1 (%) Recall@2 (%) Recall@4 (%) Recall@8 (%) MAP (%) MAP@R (%) R-Precision (%)

Pre-trained 4.97 8.10 11.41 15.30 7.69 2.27 3.44
Constrastive 28.56 38.34 48.85 59.10 31.19 14.16 19.19

Multi-similarity 23.12 32.24 41.86 52.13 26.77 11.72 16.29
NormSoftmax 30.02 40.32 . 50.19 59.96 32.61 14.03 18.76
NTXent 23.86 33.04 42.59 51.98 27.00 12.05 16.51
ProxyNCA 29.36 39.47 50.05 60.11 32.38 14.05 19.00
TripletMargin 22.15 31.10 41.32 51.90 25.80 10.87 15.41

Table 3. Test metrics for the ABO-MVR benchmark, using rendered images as queries. The gallery images are derived from catalog
images and contain classes from the train and test classes.

Loss Recall@1 (%) Recall@2 (%) Recall@4 (%) Recall@8 (%) MAP (%) MAP@R (%) R-Precision (%)

Pre-trained 17.99 23.93 31.72 38.65 22.57 6.99 9.55
Constrastive 39.67 . 52.21 64.41 71.64 42.96 22.52 28.07

Multi-similarity 38.05 50.06 61.79 68.17 40.87 21.06 26.32
NormSoftmax 35.50 46.70 57.38 64.78 38.07 18.63 23.42
NTXent 37.51 49.34 61.37 69.23 40.12 20.03 25.32
ProxyNCA 35.64 46.53 57.36 65.06 38.50 18.81 23.65
TripletMargin 36.87 48.34 60.98 69.44 40.03 19.94 25.46

Table 4. Test metrics for the ABO-MVR benchmark, using catalog images as queries. The gallery images are derived from catalog
images and contain classes from the train and test classes.

images of train classes. Naturally, the image used as query
is discarded from its own search results before computing
the metrics. Still, as we can see, these is a significant gap
between retrieving from rendered queries compared to cata-
log images. This highlights the difficulty of this new bench-
mark.

Qualitative Results In Figure 5 we show qualitative results
for a few queries (low elevation, mid elevation, high eleva-
tion), showing some success and failure cases of NormSoft-
max, ProxyNCA and Contrastive.



Figure 5. Qualitative retrieval results for low, medium, and high elevation products. The leftmost column shows the query image, the
other 8 columns show the top-8 results, highlighted in green if correct and red if incorrect. The top 3 rows are results of Contrastive, the
middle 3 are of NormSoftmax and the bottom 3 are ProxyNCA. Each group of 3 rows have the same queries: one of low elevation (side
table), one of mid-elevation (air conditioner), one of high elevation (cart).



References

[1] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In European
conference on computer vision, pages 628–644. Springer,
2016.

[2] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017.

[3] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision, pages 9785–9795, 2019.

[4] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
r-cnn. In ICCV, 2019.

[5] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5356–5364, 2019.

[6] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017.

[7] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. Pointrend: Image segmentation as rendering. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9799–9808, 2020.

[8] Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely,
Angjoo Kanazawa, Afshin Rostamizadeh, and Ameesh
Makadia. An analysis of svd for deep rotation estimation.
arXiv preprint arXiv:2006.14616, 2020.

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014.

[10] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987.

[11] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4460–4470, 2019.

[12] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A met-
ric learning reality check. In European Conference on Com-
puter Vision, pages 681–699. Springer, 2020.

[13] Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Josh
Tenenbaum, Bill Freeman, and Jiajun Wu. Learning to re-
construct shapes from unseen classes. In Advances in Neural
Information Processing Systems, pages 2257–2268, 2018.


