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In this supplementary, we will first introduce how we
transplant two baseline groups to high-resolution image har-
monization task in Section 1. Then, we will investigate the
performance on different foreground ratio ranges in Sec-
tion 2. We will conduct ablation studies to analyze the roles
of three components in our CDTNet in Section 3, including
both qualitative analysis in Section 3.1 and efficiency anal-
ysis in Section 3.2. Then, we will take an in-depth look at
our color mapping module in Section 4. Besides, we will
provide more visual results of different methods on two dif-
ferent resolutions (i.e., 1024 × 1024 and 2048 × 2048) in
Section 5. Furthermore, we will introduce the details of our
created 100 high-resolution real composite images and the
conducted user study, and exhibit some harmonized results
of different methods on real composite images in Section
6. Finally, we will discuss the limitations of our method
in Section 7. Note that when conducting experiments on
1024× 1024 (resp., 2048× 2048) resolution, the resolution
of low-resolution generator in our CDTNet is set as 256
(resp., 512), unless otherwise stated.

1. Baseline Transplantation
Since there are no existing high-resolution image harmo-

nization methods available for comparison, we transplant
low-resolution image harmonization methods [4–6, 9, 10]
and high-resolution image-to-image translation methods [1,
3, 12] to our task with essential modification of their offi-
cial implementation. The low-resolution image harmoniza-
tion models [4–6, 9, 10] can be trained on high-resolution
images despite the huge memory consumption. Thus, we
train these models on high-resolution images with sufficient
GPU memory. For high-resolution image-to-image transla-
tion methods, we modify their input by concatenating fore-
ground mask and the composite image, leaving the other
components of the network untouched, because the fore-
ground mask has been proved essential for the harmoniza-
tion task [4, 5].

*Corresponding author.

2. Foreground Ratio Ranges Analyses

To better demonstrate that high-resolution pixel-to-pixel
transformation may be weak in capturing long-range depen-
dency due to local convolution operations [13], we investi-
gate the performance of iS2AM and our CDTNet in differ-
ent foreground ratio ranges based on MSE and foreground
MSE (fMSE) metrics. The results are reported in Table1.
On 1024× 1024 resolution, iS2AM achieves a comparable
performance to our CDTNet when the foreground ratios are
less than 15%. However, when the foreground ratios are
greater than 15%, our CDTNet outperforms iS2AM by a
large margin. On 2048× 2048 resolution, our CDTNet out-
performs iS2AM in all ranges of foreground ratios. More-
over, the performance gap increases as the foreground ratio
range increases, which strongly demonstrates that iS2AM
tends to have inferior performance especially when the fore-
grounds are large.

3. Ablation Studies

3.1. Qualitative Analyses

Our CDTNet consists of a low-resolution generator for
pixel-to-pixel transformation, a color mapping module for
RGB-to-RGB transformation, and a refinement module to
take advantage of both. We have provided the quantita-
tive results of ablating each component in Table 4 in the
main paper. In Figure 1, we present some example images
harmonized by different ablated versions on 1024 × 1024
resolution, including only using the low-resolution gener-
ator (row 1 in Table 4 in the main paper), only using the
color mapping module (row 2 in Table 4 in the main pa-
per), and our full method (row 10 in Table 4 in the main
paper). We can observe that the upsampled results of the
low-resolution generator are too blurry to meet the satisfac-
tion of high-resolution image harmonization. In contrast,
the results of the color mapping module are with high reso-
lution and sharp contour. However, due to the lack of fine-
grained information, global RGB-to-RGB transformation
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Image Size Foreground ratios 0% ∼ 5% 5% ∼ 15% 15% ∼ 100% 0% ∼ 100%
MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓

1024 ×1024
Input composite 47.70 1810.54 179.51 1922.07 827.27 2630.86 352.05 2122.37

iS2AM [10] 4.91 192.56 13.98 151.67 56.19 162.23 25.03 168.85
CDTNet 4.34 178.50 13.32 146.95 44.80 132.20 21.24 152.13

2048 ×2048
Input composite 48.28 1834.87 180.91 1938.20 830.90 2642.80 353.92 2139.97

iS2AM [10] 6.51 261.54 23.47 247.15 108.99 305.52 46.37 271.59
CDTNet 3.98 161.13 12.67 140.14 51.14 145.64 23.35 159.13

Table 1. MSE and foreground MSE (fMSE) of iS2AM and our CDTNet in each foreground ratio range based on the whole test set. The
best results are denoted in boldface.

cannot leverage local context and may produce unsatisfac-
tory local results (e.g., darker roofs in row 2, brighter signs
and words in row 4, more obvious reflective light in row 6).
Our full method takes advantage of both modules and pro-
duces more favorable results, which are visually pleasant
and closer to the ground-truth.

3.2. Efficiency Analyses

In Table 3 in the main paper, we evaluate the efficiency
of our method and its simplified variant. Here, we further
investigate the efficiency for each individual module (i.e.,
low-resolution generator G, color mapping module C, and
refinement module R) in Table 2.

Since the generator only operates on low-resolution in-
puts, its time consumption, as well as computational and
memory cost, are well-surpressed compared to that of
iS2AM [10] in Table 3 in the main text. Note that the color
mapping module in Table 2 does not include the encoder
E from the low-resolution generator. Since global RGB-to-
RGB transformation is barely constrained by the number of
pixels and the weight predictor is light-weighted in struc-
ture, our color mapping module is very efficient in high res-
olutions. Our refinement module is also simple in structure.
Although its memory cost and FLOPs are relatively higher,
the inference time is fast, and the resolution change only
causes a slight increase in the time cost.

4. Analyses of Our Color Mapping Module
In our color mapping module, we employ N basis trans-

formations (LUTs) and a weight predictor to predict the
combination coefficients of basis transformations. In the
main paper, we set N = 4 by default. In this section,
we first investigate the number N of the basis transfor-
mations on 1024 × 1024 resolution. Specifically, we set
N = {1, 2, 3, 4, 5, 6, 7, 8} and employ weight predictor as
proposed in Section 3.2 in the main text.

In Figure 2, we plot the performance by varying N . It
can be seen that using only a single LUT has poor perfor-
mance due to the weak transformation ability. When in-
creasing N from 1 to 4, the performance is boosted obvi-

Image Size Module Time↓ Memory↓ FLOPs↓

1024 ×1024
G 8.6 322 14.96
C 1.1 49 0.07
R 1.1 1552 63.02

2048 ×2048
G 9.2 1287 59.84
C 1.1 196 0.27
R 1.2 6208 252.07

Table 2. Efficiency evaluation for each individual module of our
CDTNet on 1024 × 1024 and 2048 × 2048 resolutions, includ-
ing “Time” (ms), “Memory” (MB), and “FLOPs” (G). G: low-
resolution generator. C: color mapping module. R: refinement
module.

ously because more LUTs can improve the expressiveness
of image-specific color transformation. Further increasing
N from 4 to 8 leads to the performance convergence with
only minor improvements. Since more LUTs will increase
the memory consumption, we set N = 4 by default in all
experiments for a good trade-off between performance and
memory consumption.

We also present example images harmonized using dif-
ferent numbers N of LUTs, where N is set as {1, 2, 4}
and the results are shown in Figure 3. It can be seen that
as N increases, the harmonized results become more visu-
ally appealing and closer to the ground-truth image, because
more basis LUTs make the combined transformation more
expressive.

We also take an in-depth look at the learnt N LUTs and
observe the transformed result using each LUT. One inter-
esting observation is that when N > 1, the transformed
result using the first LUT is close to the composite image
while the transformed results using the other N−1 LUTs
look like residues. This might be caused by our way of ini-
tializing N LUTs. Specifically, the first LUT is initialized
as an identity map while the other N−1 LUTs are initialized
as zero maps. Therefore, the combination of transformed
results using N LUTs is equivalent to making adjustments
for the composite image by adding proper residues.



Figure 1. Example results harmonized by only using the low-resolution generator Îlrpix (row 1 in Table 4 in the main paper), only using the
color mapping module Îhrrgb (row 2), and our full method CDTNet (row 10). The red border lines indicate the foreground, and the yellow
boxes zoom in the particular regions for a better observation.

5. More Visualization Results on HAdobe5k

We provide more results of baseline pix2pixHD [12],
iS2AM [10], our simplified variant which uses deep RGB-
to-RGB transformation only (CDTNet-256 (sim) in Table

1 in the main text), and our CDTNet on 1024 × 1024 res-
olution in Figure 4. We also provide additional results of
iS2AM, our simplified variant (CDTNet-512 (sim) in Ta-
ble 1 in the main text), and our CDTNet on 2048 × 2048



Figure 2. Impact of the number N of the basis transformations on 1024× 1024 resolution.

resolution in Figure 5. pix2pixHD [12] is not specifically
designed for image harmonization, so its performance is
less satisfactory. The large image harmonization models
directly trained on high-resolution images may be weak in
capturing long-range dependency, as discussed in Section 2.
In Figure 4, our simplified variant (CDTNet (sim)) obtains
globally reasonable illumination but insufficient local har-
mony, while in Figure 5, CDTNet (sim) outperforms iS2AM
by generating more harmonious results, which demon-
strates the expressiveness of our deep RGB-to-RGB trans-
formation. Based on Figure 4 and Figure 5, for both resolu-
tions, our CDTNet could generate more plausible and satis-
factory harmonization results stably and adaptively, which
demonstrates the superiority and robustness of our method.

6. Results on High-Resolution Real Composite
Images

Considering that the composite images in HAdobe5k are
synthesized composite images, we further perform evalua-
tion on 100 high-resolution real composite images.

6.1. Image Statistics

We create high-resolution real composite images using
the images from Open Image Dataset V6 [7]. Open Image
Dataset V6 contains ∼9M images with 28M instance seg-
mentation annotations of 350 categories, where enormous
images are collected from Flickr 1 and with high resolution.
Therefore, we collect the foreground images from the whole
Open Image Dataset V6 and use the provided instance seg-
mentation masks to crop the foregrounds. To ensure the di-
versity and quality of the composite images, we collect the
background images from both Open Image Dataset V6 and
Flickr, considering the resolutions and semantics. Then, we
use PhotoShop to combine cropped foregrounds and back-
ground images by placing the foreground region at a reason-
able location with a suitable scale. After that, we choose
100 high-resolution real composite images with obviously
inharmonious foreground and background for evaluation.

The generated real composite images are with random
resolution from 1024 to 6016. The foregrounds include

1https://www.flickr.com

Method B-T score↑
Composite 0.999

pix2pixHD [12] 0.386
iS2AM [10] 1.076

CDTNet 1.216

Table 3. B-T scores of baseline pix2pixHD [12], iS2AM [10], and
our CDTNet on 100 high-resolution real composite images.

human portraits and general objects (e.g., dog, cat, car),
and the backgrounds cover diverse scenes. Example high-
resolution real composite images and corresponding masks
could be found in Figure 6.

6.2. User Study

To demonstrate the effectiveness of our proposed CDT-
Net in real scenarios, we follow [4, 5, 11] and further com-
pare our model with baseline pix2pixHD [12], iS2AM [10]
on 100 real composite images resized to 1024× 1024 reso-
lution. More specifically, given each composite image and
its 3 harmonized outputs from 3 different methods, we can
construct image pairs (Ii, Ij) by randomly selecting two
from these 4 images {Ii|4i=1}. Hence, we can construct 600
image pairs based on 100 real composite images.

Each user involved in this subjective evaluation could
see an image pair each time to decide which one looks
more harmonious and realistic. Considering the user bias,
14 users participate in the study in total, contributing 8400
pairwise results. With all pairwise results, we employ the
Bradley-Terry (B-T) model [2, 8] to obtain the global rank-
ing of all methods, and the results are reported in Table 3.
Our proposed method shows an advantage over other meth-
ods with the highest B-T score, which demonstrates that
by combining the complementary pixel-to-pixel transfor-
mation and RGB-to-RGB transformation, our method could
generate more favorable results in real-world applications.

6.3. Qualitative Results

To visualize the comparison on high-resolution real com-
posite images, we provide the harmonization results of
pix2pixHD [12], iS2AM [10], and our CDTNet in Figure



Figure 3. Example harmonized results using different numbers of LUTs in the color mapping module. From left to right, we show the input
composite image, the ground-truth image, as well as the harmonized results generated using 1 LUT, 2 LUTs, and 4 LUTs (our setting) on
1024× 1024 resolution.



Figure 4. Odd rows show the input composite image, the ground-truth image, as well as example results generated by pix2pixHD [12],
iS2AM [10], our simplified variant, CDTNet (sim), which uses deep RGB-to-RGB transformation only, and our CDTNet on 1024× 1024
resolution. The red border lines indicate the foreground, and the yellow boxes zoom in the particular regions for a better observation.

8 and Figure 9. Since pix2pixHD is not well-designed for
image harmonization, it tends to produce checkerboard ar-
tifacts and halo artifacts in the foreground region, which
is especially obvious when zooming in. Therefore, the re-
sults of pix2pixHD are far from satisfactory in the real sce-

nario. Compared with iS2AM, our CDTNet is more capable
of generating harmonious outputs in real scenarios, which
demonstrates the superiority and generalizability of our pro-
posed method.



Figure 5. Odd rows show the input composite image, the ground-truth image, as well as example results generated by iS2AM [10], our
simplified variant, CDTNet (sim), which uses deep RGB-to-RGB transformation only, and our CDTNet on 2048 × 2048 resolution. The
red border lines indicate the foreground, and the yellow boxes zoom in the particular regions for a better observation.



Figure 6. Example composite images and corresponding masks from our created 100 high-resolution real composite images.

Figure 7. A Sample of failure cases on 1024 × 1024 resolution.
From left to right, we show the input composite image, the ground-
truth image, as well as the harmonized result generated using only
the low-resolution generator, only the color mapping module, and
our CDTNet.

7. Limitations

Although our model could achieve stable and effective
image harmonization performance on different resolutions,
it might encounter failures with unrealistic local results. For
example, in Figure 7, the petal in the input composite image
is overexposed, which still remain very bright after applying

global RGB-to-RGB transformation (see the RGB-to-RGB
result Îhrrgb). The RGB-to-RGB result, as partial input of
the refinement module, may adversely affect the refinement
module, leading to inharmonious local results.
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