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1. Implementation Details

1.1. Model Hyperparameters

When the ego vehicle receives messages from more than
three neighboring vehicles, we randomly select messages
from 3 of the 6 nearest neighboring vehicles within a 40-
meter range. Every raw LiDAR point cloud may contain up
to 65,536 coordinates. To down-sample the point cloud, we
merge the points through max-pooling within each cell of a
voxel grid of size 0.5m×0.5m×0.5m. After ground plane
removal, we randomly select 2,048 points as the encoder in-
put. All the neighbors encode their processed point clouds
locally by the 3-block Point Transformer encoder and send
the message of size 128×(128, 3) and warp the coordinates
to the ego frame. In our 3-neighbor case, the received mes-
sage size is 384 × (128, 3). We filter out the out-of-range
messages and apply voxel max-pooling to these messages
for size reduction. We aggregate the merged representa-
tions by another block of down sampling and point trans-
former. After global max pooling, the features are concate-
nated with the ego speed feature before passing to the fully
connected layers that has has 256 and 64 hidden units. The
multi-head attention layers in the Point Transformer uses
an embedding size of 32, and the kNN considers 16 nearest
neighbors.

To comply with the speed limit rules, we apply a PID
controller and use the output (denoted as Bp) as a reference
for brake during the interaction with the environment. The
control decision (athrottle, abrake, asteer) follows:

athrottle =

{
0 if T ≤ B or Bp > 0

T otherwise

abrake =


B if T ≤ B

Bp if T > B and Bp > 0

0 otherwise

asteer = S

∗
Equal contribution. Correspondence: cuijiaxun@utexas.edu,

hangqiu@stanford.edu, yukez@cs.texas.edu

Parameter Value

raw LiDAR point size 65,536
lidar range(radius) 70m× 70m× 5m
lidar scanning frequency 10 Hz
voxel size 0.5m× 0.5m× 0.5m
npoints 2,048
kNN neighbors 16
transformer dimensions 32
control module MLP structure [128+8, 256, 64, 3]
point transformer blocks 3
max number of neighbors 3

Table 1. Model Parameters

Detailed model parameters are listed in the Table 1.

1.2. Training Details

Our model training consists of two stages: behavior
cloning and DAgger. We first train every scenario-specific
model for 100 epochs by behavior cloning on 12 trajecto-
ries, with 3 of them collected under accident-prone configu-
rations (i.e., with an occluded collider vehicle inserted) and
9 of them being normal driving trajectories. The weights
of neural networks are optimized with the Adam optimizer
with an initial learning rate 10−4, weight decay 10−5, and
batch size 32. Then the final policy of behavior cloning
serves as the initial student policy at the second stage for
DAgger. We collect 4 new trajectories every 5 epochs us-
ing a sampling policy with β0 = 0.8. The newly-collected
data, which has a normal-to-accident-prone ratio of 3:1, are
aggregated to the DAgger training dataset. We run DAgger
training for 105 epochs (i.e., 21 iterations). We evaluate the
final policy after the last iteration. The training time varies
among different models. The average wall time needed for
training COOPERNAUT is roughly 60 hours with a 24GB
Nvidia GeForce 3090 GPU and 16 Intel(R) Core(TM) i9-
10900KF @ 3.70GHz CPUs. Table 2 lists the important
training parameters.
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Parameter Value

BC batch size 32
BC training epochs 100
BC sample size 12 trajectories
DAgger batch size 32
DAgger training epochs 105
DAgger β0 0.8
DAgger sampling frequency 4 trajectories/5 epochs
DAgger sample size 88 trajectories

Table 2. Training Parameters

1.3. Trajectory Generation

For every trajectory generated, we stop collecting more
data for this trajectory if the agent crashes into any entity
in the environment or stagnates for more than 30 seconds
(simulator time) or exceeds the total time limit per scenario.

2. Dataset
AUTOCASTSIM is highly scalable to the computing re-

sources. In our experiments, simulation processes for data
collection are parallelized by the Ray library [1]. Users can
specify the desired traffic densities, ranges of dangerous en-
vironment configurations (e.g., other vehicles’ speed and
collision location), and the number of desired trajectories.
Then AUTOCASTSIM procedurally generate environments
with the specifications and produce the desired number of
trajectories. The datasets for the training pipeline are split
into the following partitions:

Train for behavior cloning (BC) (12 expert trajectories,
including 3 accident-prone and 9 normal),

Validation for validation during training BC and DAg-
ger (3 accident-prone trajectories),

Expert (81 accident-prone trajectories generated by the
expert) collected using a fixed set of random seeds to control
the environment randomness for fair comparisons among
the expert and different studied methods,

DAgger for online training with DAgger (88 trajecto-
ries generated by the DAgger sampling policy, including 22
accident-prone and 66 normal).

3. Latency
COOPERNAUT achieves a 90ms latency of the entire in-

ference pipeline. The Point Encoder takes up 80ms for
every vehicle on Nvidia GeForce 3090 GPU and Intel(R)
Core(TM) i9-10900KF CPU @ 3.70GHz CPUs.

4. Compression
The intermediate representation is of shape 128×(128+

3), represented by the 32-bit float numbers. The package

size is about 0.51 Mb and requires a 5.1Mbps bandwidth if
we transmit packages at a 10Hz frequency, which satisfies
the bandwidth constraints of V2V channels. Nonetheless,
it is possible to apply lossless compression algorithms to
further reduce the message sizes.

5. Trajectories
Figure 1a, 1b, and 1c illustrate some examples of critical

frames in the trajectories of different scenarios between the
No V2V Sharing baseline and COOPERNAUT.

• Left Turn. The ego vehicle tries to turn left on a left-
turn yield light but encounters another truck in the op-
posite left-turn lane, blocking its view of the opposite
lanes and potential straight-going vehicles. In the Left
Turn yielding scenario (Figure 1a), COOPERNAUT is
shown to avoid the collision by proactively stopping
at the junction and does not turn left until there is no
close opposite going cars.

• Overtaking. A truck is blocking the way of a sedan
in a two-way single-lane road with a dashed yellow
lane divider. The truck is also impeding the sedan’s
view of the opposite lane. An autonomous agent has
to make a lane change maneuver to overtake. In Figure
1b, COOPERNAUT is shown to wait for a safe gap be-
tween the opposite traffic flow before making the lane-
change maneuver, while the No V2V Sharing policy
aggressively changes lane.

• Red Light Violation. The ego vehicle is crossing the
intersection when there is another vehicle rushing the
red light. LiDAR fails to detect the other vehicle be-
cause of the lined-up cars waiting for the left turn. In
Figure 1c, COOPERNAUT is shown to detect the dan-
gerous traffic violator and brake before possible col-
lisions, while the No V2V Sharing policy proceeds
straight to collide with the traffic violator.

6. Datasets and Codebases
We provide additional information and resources on

our project website: https://ut-austin-rpl.
github.io/Coopernaut/. Links to the training
datasets and codebases of COOPERNAUT and AUTOCAST-
SIM can be found on this website.
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(a) Left Turn scenario.
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(b) Overtaking.
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(c) Red Light Violation.

Figure 1. Example trajectories of No V2V Sharing model and COOPERNAUT under 3 scenarios.


