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The Supplementary Material is organized as follows.

Section A presents the the discriminator architecture used

for training ST-MFNet. Section B provides additional

ablation study results. The visualization of the multi-

scale multi-flows is given in Section C. Section D presents

the additional quantitative evaluation results in terms of

LPIPS [28]. Results on multi-frame interpolation are pro-

vided in Section E. An additional experiment to validate the

model design is described in Section F. The experimental

configuration of the user study is described in Section G.

Section H provides a link to a supplementary demo video.

Finally, Section I summarizes the license information for all

data and code assets used in this paper.

A. Discriminator for ST-MFNet

The architecture of the discriminator employed in this

work is illustrated in Figure 1; this was originally designed

to train ST-GAN [27] for texture synthesis. It contains a

temporal and a spatial branch. The former takes the differ-

ences between the interpolated output Ioutt (where t = 1.5)

of ST-MFNet and its two adjacent original frames I1, I2 as

input. The differences here represent the high-frequency

temporal information within these three frames. The spatial

branch in this network processes the ST-MFNet output Ioutt

to generate spatial features. Finally, the temporal and spatial

features generated in these two branches are concatenated

before fed into the final fully connected layers.

B. Additional Ablation Study Results

In the main paper, we presented key ablation study re-

sults where the primary contributions in the proposed ST-

MFNet are evaluated. Here the effectiveness of the up-

sampling scale is further investigated, which has been em-

ployed during the multi-flow prediction in the MIFNet

branch (see Section 3.1 of the main paper). In addition,

we present the quantitative ablation study results for the

ST-GAN in terms of a perceptually-oriented metric, the

Learned Perceptual Image Patch Similarity (LPIPS) [28].

Up-sampling. To evaluate the contribution of the up-

sampling scale during the multi-flow prediction, the version

of ST-MFNet (Ours-w/o US) with only two multi-flow esti-

mation heads (at l = 0, 1 scales) were implemented. It was

also trained and evaluated using the same configurations de-

scribed in the main paper. Its interpolation results are sum-

marized in Table 1 alongside more comprehensive ablation

study results for the other four variants of ST-MFNet (de-

scribed in the main paper). It can be observed that Ours-

w/o US was outperformed by the full version of ST-MFNet

(Ours) on all test datasets. The performance difference can

also be demonstrated through visual comparison as shown

in Figure 2. All of these confirm the effectiveness of the

up-sampling scale in multi-flow estimation.

ST-GAN. In the main paper, due to space limitations, we

only evaluated the effectiveness of the adopted ST-GAN us-

ing visual examples. Here we additionally present the quan-

titative ablation study results for the adopted ST-GAN. For

this purpose, we evaluate the same variants of ST-MFNet

as described in Section 5.1 (the ST-GAN sub-section) of

the main paper, that is, the distortion-oriented version (Our-

Llap), the version fine-tuned with ST-GAN (Our-Lp), the

version fine-tuned with FIGAN [12] and the version fine-

tuned with TGAN [22]. Table 2 summarizes the perfor-

mance of these variants on all four test sets in terms of

LPIPS. It can be clearly observed from the table that the ST-

GAN adopted in our work provides the best overall LPIPS

performance, indicating its effectiveness for enhancing per-

ceptual quality of the interpolated results.

C. Visualization of Motion Fields

To better understand the effectiveness of the multi-scale

multi-flow estimation in the MIFNet branch, the predicted

multi-flows are visualized here in the same manner as done

in [12]. That is, the mean flow maps at scale l, Ḡl
t→n (where

n = 1, 2), are obtained using Equations (1) and (2), and

shown in Figure 3. Note that for the purpose of visualiza-

tion, the flows at the down- and up-sampled scales are re-

scaled to the original resolution using the nearest neighbor
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Figure 1. Architecture of the discriminator used for training ST-MFNet.

UCF101 DAVIS
SNU-FILM

VFITex
Easy Medium Hard Extreme

Ours-w/o BLFNet 33.218/0.970 27.767/0.881 40.655/0.990 36.890/0.984 31.205/0.947 25.492/0.869 28.498/0.915

Ours-w/o MIFNet 33.202/0.969 27.886/0.889 40.331/0.991 36.530/0.982 31.321/0.949 25.620/0.871 28.357/0.911

Ours-w/o TENet 32.895/0.970 27.484/0.880 40.275/0.991 35.983/0.980 30.527/0.937 25.374/0.864 28.241/0.910

Ours-unet 33.378/0.970 28.096/0.892 40.616/0.991 36.797/0.984 31.383/0.950 25.680/. 872 28.898/0.925

Ours-w/o US 33.371/0.970 28.155/0.893 40.248/0.990 36.689/0.983 31.384/0.949 25.636/0.873 28.977/0.925

Ours 33.384/0.970 28.287/0.895 40.775/0.992 37.111/0.985 31.698/0.951 25.810/0.874 29.175/0.929

Table 1. Comprehensive ablation study results on ST-MFNet.

UCF101 DAVIS
SNU-FILM

VFITex
Easy Medium Hard Extreme

Ours-Llap 0.036 0.125 0.019 0.036 0.073 0.148 0.216

TGAN 0.034 0.117 0.019 0.033 0.068 0.142 0.213

FIGAN 0.036 0.119 0.020 0.035 0.070 0.146 0.216

Ours-Lp 0.033 0.116 0.017 0.031 0.065 0.140 0.210

Table 2. Quantitative ablation study results for ST-GAN, in terms of LPIPS.

(a) Overlay (b) GT (c) Ours-w/o US (d) Ours-w/ US

Figure 2. Qualitative results interpolated by the ST-MFNet with the up-sampled scale removed (Ours-w/o US) and the full version of

ST-MFNet (Ours-w/ US). Here “Overlay” means the overlaid adjacent frames.



(a) Overlay (b) Ḡl=0

t→1
(c) Ḡl=0

t→2
(d) Ḡl=1

t→1
(e) Ḡl=1

t→2 (f) Ḡl=−1

t→1
(g) Ḡl=−1

t→2

Figure 3. Visualization of the multi-scale multi-flows predicted by the network.

filter.

g(x, y, i) = (α(x, y, i),β(x, y, i)) (1)

Ḡl
t→n(x, y) =

N∑

i=1

w(x, y, i)g(x, y, i) (2)

It can be observed from Figure 3 that compared to the mean

flow map at the original scale (l = 0), the flows estimated

for the down-sampled scale (l = 1) tend to depict the gen-

eral motion coarsely in different regions. On the other hand,

the flow maps at the up-sampled scale (l = −1) reflect more

detailed motion information.

D. Comprehensive Evaluation Results

In the main paper, we presented our quantitative evalu-

ation results of the proposed ST-MFNet and 14 competing

methods in terms of PSNR and SSIM. Here, we additionally

evaluate these methods in terms of LPIPS. The full results

on the test sets UCF101 [24], DAVIS [21] and VFITex are

summarized in Table 3, and the results on SNU-FILM [6]

are shown in Table 4.

E. Results of 4× and 8× Interpolation

The performance of the proposed ST-MFNet on multi-

frame interpolation task is also evaluated, and compared

to three best-performing benchmark algorithms: QVI [25],

FLAVR [11] and Softsplat [18]. The algorithms were ap-

plied recursively to generate all the intermediate frames.

The 11 test sequences at 240 FPS in the GoPro dataset [17]

were used as the test set for 4× and 8× interpolation. Ta-

ble 5 summarizes the results, where it can be seen that ST-

MFNet shows the best overall performance.

F. Validation of Model Design

The proposed ST-MFNet combines multi-flow and

single-flow based warping methods to enhance the interpo-

lation quality of both complex and large motions. A natural

question to ask is whether the performance of the model

comes from the specific model design or simply from en-

sembling effect. To address this question, we create an en-

semble model as a baseline, which simply combines Ada-

CoF [12] and Softsplat [18] through arithmetic averaging.

This baseline model was trained under the same configura-

tions as ST-MFNet and compared to the latter quantitatively.

The results are summarized in Table 6, where it is noted that

although ensembling of AdaCoF and Softsplat does provide

some benefit, the gain is marginal. This implies that the

main source of the performance gain in ST-MFNet is the

model design.

G. User Study

The user study was conducted in a darkened, lab-based

environment. The test sequences were played on a SONY

PVM-X550 display, with screen size 124.2×71.8cm. The

display resolutions were configured to 1920×1080 (spatial)

and 60Hz (temporal), and the viewing distance was 2.15

meters (three times the screen height) [9]. The presenta-

tion of video sequences was controlled by a Windows PC

running Matlab Psychtoolbox [3]. In each trial, a pair of

videos to be compared were played twice, then the partic-

ipant was asked to select the video with better perceived

quality through an interface developed using the Psychtool-

box. This user study and the use of human data have under-

gone an internal ethics review and has been approved by the

Institutional Review Board.

H. Video Demo

A video containing interpolation examples generated by

ST-MFNet and more visual comparisons is available via

this link: https://drive.google.com/file/d/

1zpE3rCQNJi4e8ADNWKbJA5wTvPllKZSj/view?

usp=sharing.



UCF101 DAVIS VFITex

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

DVF [13] 32.251 0.965 0.036 20.403 0.673 0.274 19.946 0.709 0.389

SuperSloMo [10] 32.547 0.968 0.028 26.523 0.866 0.119 27.914 0.911 0.217

SepConv [19] 32.524 0.968 0.035 26.441 0.853 0.169 27.635 0.907 0.230

DAIN [4] 32.524 0.968 0.030 27.086 0.873 0.117 27.314 0.909 0.212

BMBC [20] 32.729 0.969 0.032 26.835 0.869 0.125 27.337 0.904 0.220

AdaCoF [12] 32.610 0.968 0.033 26.445 0.854 0.158 27.639 0.904 0.222

FeFlow [8] 32.520 0.967 0.036 26.555 0.856 0.169 OOM OOM OOM

CDFI [7] 32.653 0.968 0.024 26.471 0.857 0.157 27.576 0.906 0.218

CAIN [6] 32.537 0.968 0.037 26.477 0.857 0.197 28.184 0.911 0.240

Softsplat [18] 32.835 0.969 0.037 27.582 0.881 0.116 28.813 0.924 0.221

EDSC [5] 32.677 0.969 0.033 26.968 0.860 0.142 27.641 0.904 0.222

XVFI [23] 32.224 0.966 0.038 26.565 0.863 0.125 27.759 0.909 0.218

QVI [25] 32.668 0.967 0.036 27.483 0.883 0.181 28.819 0.926 0.210

FLAVR [11] 33.389 0.971 0.035 27.450 0.873 0.190 28.487 0.915 0.233

ST-MFNet (Ours-Llap) 33.384 0.970 0.036 28.287 0.895 0.125 29.175 0.929 0.216

ST-MFNet (Ours-Lp) 33.364 0.970 0.033 28.172 0.892 0.116 28.945 0.924 0.210

Table 3. Quantitative comparison results for our model and 14 tested methods on UCF101, DAVIS and VFITex, in terms of PSNR, SSIM

and LPIPS. OOM denotes cases where our GPU runs out of memory for the evaluation. For each column, the best result is colored in red

and the second best is colored in blue. Underlined scores denote the performance of pre-trained models rather than our re-trained versions.

SNU-FILM

Easy Medium Hard Extreme

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DVF [13] 27.528 0.876 0.109 24.091 0.817 0.166 21.556 0.760 0.231 19.709 0.705 0.303

SuperSloMo [10] 36.255 0.984 0.025 33.802 0.973 0.034 29.519 0.930 0.068 24.770 0.855 0.141

SepConv [19] 39.894 0.990 0.022 35.264 0.976 0.043 29.620 0.926 0.094 24.653 0.851 0.183

DAIN [4] 39.280 0.989 0.020 34.993 0.976 0.033 29.752 0.929 0.082 24.819 0.850 0.142

BMBC [20] 39.809 0.990 0.020 35.437 0.978 0.034 29.942 0.933 0.088 24.715 0.856 0.145

AdaCoF [12] 39.912 0.990 0.021 35.269 0.977 0.039 29.723 0.928 0.080 24.656 0.851 0.152

FeFlow [8] 39.591 0.990 0.022 35.014 0.977 0.041 29.466 0.928 0.090 24.607 0.852 0.182

CDFI [7] 39.881 0.990 0.019 35.224 0.977 0.036 29.660 0.929 0.081 24.645 0.854 0.163

CAIN [6] 39.890 0.990 0.021 35.630 0.978 0.037 29.998 0.931 0.097 25.060 0.857 0.203

Softsplat [18] 40.165 0.991 0.021 36.017 0.979 0.036 30.604 0.937 0.066 25.436 0.864 0.119

EDSC [5] 39.792 0.990 0.023 35.283 0.977 0.040 29.815 0.929 0.080 24.872 0.854 0.153

XVFI [23] 38.849 0.989 0.022 34.497 0.975 0.039 29.381 0.929 0.075 24.677 0.855 0.139

QVI [25] 36.648 0.985 0.019 34.637 0.978 0.032 30.614 0.947 0.066 25.426 0.866 0.140

FLAVR [11] 40.135 0.990 0.021 35.988 0.979 0.049 30.541 0.937 0.112 25.188 0.860 0.218

ST-MFNet (Ours-Llap) 40.775 0.992 0.019 37.111 0.985 0.036 31.698 0.951 0.073 25.810 0.874 0.148

ST-MFNet (Ours-Lp) 40.542 0.991 0.017 36.964 0.983 0.031 31.580 0.949 0.065 25.764 0.871 0.140

Table 4. Quantitative comparison results for our model and 14 tested methods on SNU-FILM dataset, in terms of PSNR, SSIM and LPIPS.

For each column, the best result is colored in red and the second best is colored in blue. Underlined scores denote the performance of

pre-trained models rather than our re-trained versions.

I. Attribution of Assets

The data and code assets employed in this work and their

corresponding license information are summarized in Ta-

ble 7 and 8 respectively.



GoPro-4× GoPro-8×

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

QVI [25] 29.324 0.927 0.049 29.280 0.929 0.048

FLAVR [11] 28.911 0.914 0.110 29.512 0.922 0.101

Softsplat [18] 28.858 0.908 0.072 29.663 0.918 0.067

ST-MFNet (Ours-Llap) 29.892 0.926 0.098 30.568 0.934 0.092

Table 5. Quantitative comparison results for 4× and 8× interpolation on GoPro dataset in terms of PSNR, SSIM and LPIPS. For each

column, the best result is colored in red and the second best is colored in blue.

AdaCoF Softsplat AdaCoF+Softsplat ST-MFNet (ours-Llap)

UCF101
PSNR (↑) 32.488 32.683 32.729 33.384

SSIM (↑) 0.968 0.969 0.969 0.970

DAVIS
PSNR (↑) 26.445 27.359 27.361 28.287

SSIM (↑) 0.854 0.878 0.878 0.895

SNU-FILM

Easy
PSNR (↑) 39.912 40.021 40.083 40.775

SSIM (↑) 0.990 0.991 0.991 0.992

Medium
PSNR (↑) 35.269 35.833 35.841 37.111

SSIM (↑) 0.977 0.979 0.979 0.985

Hard
PSNR (↑) 29.723 30.412 30.449 31.698

SSIM (↑) 0.928 0.936 0.937 0.951

Extreme
PSNR (↑) 24.656 25.242 25.258 25.810

SSIM (↑) 0.851 0.862 0.864 0.874

VFITex
PSNR (↑) 27.639 28.620 28.629 29.175

SSIM (↑) 0.904 0.922 0.923 0.929

Table 6. Quantitative evaluation results of the proposed ST-MFNet and a simple baseline that combines AdaCoF and Softsplat. For each

row, the best result is colored in red and the second best is colored in blue. Note Softsplat here is trained with Charbonnier loss so that

AdaCoF, Softsplat and the baseline only differ in model design.



Dataset Dataset URL License / Terms of Use

Vimeo-90k [26] http://toflow.csail.mit.edu MIT license.

BVI-DVC [14] https://fan-aaron-zhang.github.io/BVI-DVC/
All sequences are allowed for

academic research.

UCF101 [24]
https://www.crcv.ucf.edu/research/data-sets/

ucf101/

No explicit license terms, but

compiled and made available

for research use by the Univer-

sity of Central Florida.

DAVIS [21] https://davischallenge.org BSD license.

SNU-FILM [6] https://myungsub.github.io/CAIN/ MIT license .

Xiph [16] https://media.xiph.org/video/derf
Sequences used are available

for research use.

Mitch Martinez Free

4K Stock Footage [1]

http : / / mitchmartinez . com / free - 4k - red - epic -

stock-footage/

Sequences used are available

for research use.

UVG database [15] http://ultravideo.fi
Non-commercial Creative

Commons BY-NC license.

Pexels [2] https://www.pexels.com/videos/
All sequences are available for

research use.

Table 7. License information for the datasets used in this work.

Method Source code URL License / Teams of Use

DVF [13] https://github.com/liuziwei7/voxel-flow Non-commercial research and

education only.

SuperSloMo [10] https://github.com/avinashpaliwal/Super-SloMo MIT license.

SepConv [19] https://github.com/sniklaus/sepconv-slomo Academic purposes only.

DAIN [4] https://github.com/baowenbo/DAIN MIT license.

BMBC [20] https://github.com/JunHeum/BMBC MIT license.

AdaCoF [12] https://github.com/HyeongminLEE/AdaCoF-pytorch MIT license.

FeFlow [8] https://github.com/CM-BF/FeatureFlow MIT license.

CAIN [6] https://github.com/myungsub/CAIN MIT license.

SoftSplat [18] https://github.com/sniklaus/softmax-splatting Academic purposes only.

XVFI [23] https://github.com/JihyongOh/XVFI Research and education only.

FLAVR [11] https://github.com/tarun005/FLAVR Apache-2.0 License.

Table 8. License information for the code assets used in this work.
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