Episodic Memory Question Answering
(Supplementary Document)

1. Additional Dataset Details

The Matterport3D [3] meshes are annotated with 40 ob-
ject categories. Following prior work [2], we work with the
12 most commonly occurring object types, leaving out ob-
jects such as walls, curtains that are rendered as a thin array
of pixels on the top-down map. The list of the 12 object cat-
egories used in our work is as follows: shelving, fireplace,
bed, table, plant, drawers, counter, cabinet, cushion, sink,
sofa and chair.

Fig. 1 shows additional qualitative examples of ques-
tions and associated ground-truth, top-down answer maps
from our dataset.

We also show additional analysis of the distribution of
locations and sizes of objects from our questions (Fig. 2
and 3). Fig. 2 visualizes the spatial distribution of 6 object
types (drawers, sink, plant, fireplace, cushion and shelving)
over the 250 x 250 spatial maps across the “short tours”
data splits (recall that this is the dataset that we train our
models on). Each object instance is represented by a circle
with the center of the circle corresponding to the location
of an object instance and the radius representing its size (on
the top-down map). The sizes of object instances are mea-
sured in terms of the number of pixels. As mentioned in
Sec. 3 (main paper), all top-down maps are of a fixed 2cm
x 2cm resolution, therefore the number of pixels covered by
an object on the top-down map has a direct correlation with
its size in the real world.

As evident from Fig. 2, the objects demonstrate a good
distribution over spatial locations in the map, thereby allevi-
ating dataset biases such as “are sinks almost always found
in specific corners of the map?”. Recall that, the fact that
we beat the LangOnly baseline by almost 150% is also in-
dicative of the fact that our models are free from such biases
as well.

Additionally, Fig. 3 (left) shows the mean object loca-
tions for all 12 categories across the “short tours” data splits.
Notice that, consistent with Fig. 2, the mean locations for
nearly all object categories are close to the center of the
250 x 250 map. This further confirms a comprehensive dis-
tribution of objects across all spatial locations in the map.
Fig. 3 (right) shows a distribution of average object sizes
per category. Here, we can see that our dataset involves

asking questions about objects of varying sizes — from typ-
ically small objects such as cushions to bigger ones such as
beds.

2. Additional Model+Training Details

Details of the temporal features. In this section, we pro-
vide more details regarding the construction of the temporal
features component of our scene memories. At a high level,
we save temporal features at every (i, j) gridcell on the top-
down map. To do that, we first represent each video tour (of
varying lengths) as a sequence of 20 (determined heuristi-
cally) equal-length segments. For every tour segment, we
then compute the subset of top-down grid-cells that were
observed by the agent during that part of the tour. This in-
duces a binary topdown map, per tour segment, indicating
whether a given (i, j) was observed during that part of the
tour or not. Aggregated over all segments via channel-wise
stacking, we get a 20-dim multi-hot vector at each (i, j).
Intuitively, these 20-bits for any top-down location (i, j) in-
dicate the time instances (in terms of segments) during the
tour when that metric location was observed.

Details of the LingUNet architecture. Fig. 3 in the main
paper shows a schematic diagram of our EMQA agent. We
show the same in Fig. 4 for the readers’ convenience and
provide more details about our LingUNet-based question-
answering module in this section. Recall (from Sec. 4 in the
main paper) that our LingUNet-based question-answering
model takes the constructed scene memory features and an
embedding of the question as an input and generates a top-
down heatmap of the agent’s answer prediction as its output.
We use a 3-layer LingUNet architecture, as shown in Fig. 4.
The module receives a tensor of dimensions 256 x 250 x 250
(the spatio-temporal memory tensor) and a 64-dim question
LSTM embedding as inputs. The scene memory tensor is
encoded through a series of three, 3 x 3 Conv. layers and the
question embedding is L2-normalized and used to generate
three convolutional filters via FC-layers. These question-
conditioned convolutional filters operate on the intermedi-
ate feature outputs from the 3 encoder Conv. layers to gen-
erate the language-conditioned skip connections. Finally,
the encoded feature volumes are passed through a series
of 3 de-convolutional layers (see Fig. 4), with added skip

Where did you see the Where did you first see the Where did you last see the
shelving? shelving? shelving?

Where did you first see the Where did you last see the
bed? bed?

Drawers

o 0 100 150 20 20

i <"

Fireplace

o 0 100 150 20 20 o

of . _

150

20 1

N ey

250

Figure 2. Distribution of spatial arrangement and size of object instances across 6 different object categories. Each instance is represented
by a circle whose center and radius correspond to the location and size of the object, as viewed on the top-down map.

connections to generate the final output map: a tensor con- The output feature map from the LingUNet model is
taining a 128-dim feature vector for each of the 250 x 250 post-processed by a 1 x 1 Conv. layer, followed by Sig-
spatial locations of the input map. moid non-linearity to generate the agent’s prediction score

Mean object locations - MP3D Short Tours Mean object areas - MP3D Short Tours

250 6000

200
4500

150

.-l.
oo 3000
.
100
1500
50
0
0 50 100 150 200 250
® Table Chair ® Bed Counter @ Shelving @ Cabinet
Sofa ® Cushion Fireplace ® Drawers @ Sink ® Plant

Figure 3. [Left] Scatter-plot showing the mean locations of all instances across a given object category, for all object categories. [Right] A
distribution of the mean object size on the top-down map across all categories demonstrating the spectrum of object sizes in our dataset.

t=20

Input ; & @ @

'_I

[5e=5vz 10 Project To Map

[K,R|T]—*

Spatiotemporal
memory

Where did
you see the
table?

Output v LingUNet

Figure 4. A schematic diagram of our proposed EMQA agent. Our agent first constructs an episodic memory representation of the tour
and then grounds answers to questions on the top-down scene floorplan using a LingUNet-based answering model.

for each of the 250 x 250 spatial map cell. “pixel” on the top-down map output to train our model
4 to correctly predict whether each metric “pixel” on the
map belongs to the answer category or not. We set the
gamma parameter in our Focal loss implementation to

Other training hyperparameters. As stated in Sec.
(main paper), we use a dynamically-weighted variant of
the binary cross entropy loss (Focal loss [8]), applied per

2.0 and use the Adam optimizer with a learning rate of
2e—4 and weight-decay of 4e—4. To circumvent mem-
ory issues during training, our data loader returns single-
ton batches of questions (and associated scene memory fea-
tures). However, we accumulate gradients and update the
model weights every B = 4 iterations to simulate an effec-
tive batch-size of 4.

Details about EgoBuffer baselines. In this section, we
provide more architectural details about the EgoBuffer-*
baselines (Sec. 5 in the main paper). As mentioned in
Sec. 5, as a first step, we compute egocentric feature vol-
umes for every step of the agent tour via a pre-trained Red-
Net model (the same pre-trained RedNet model weights are
used across all our models and baselines).

For the EgoBuffer-Avg baseline, we simply average
these per-step, convolutional feature volumes and pass them
through a 4-layer convolutional network (followed by a lin-
ear layer) to get a flattened, 1-D vector representation of the
agent tour.

For the EgoBuffer-GRU baseline, we instead compute
the encoded, flattened, 1-D feature representation at every
step and then pass them through a GRU. The hidden state
from the final time step is the representation of the agent’s
tour.

And finally, for the EgoBuffer-Attn. baseline, instead
of sending the per-step, flattened egocentric features as in-
puts to a GRU, we perform a scaled, dot-product attention,
conditioned on the question-embedding to obtain the tour
representation.

Once we obtain the tour representation using the meth-
ods described above, we append the features with the ques-
tion embedding and then decode the multi-modal (ques-
tion+scene) features into a 250 x 250 feature map via a 5-
layer de-convolutional network. Finally, use a 1 x 1 Conv
+ Sigmoid layer to get the answer prediction scores.

Also note that, similar to our proposed model, the family
of EgoBuffer-* baselines are trained on fixed-size, 20-step
“short” tours. During evaluation on “full tours”, we split
them into consecutive chunks of 20-steps each, generate a
250 x 250 output for each such “short tour” segment and
then combine them into the full-scale environment map to
get the final output (using pose information).

3. Additional Quantitative EMQA Results

As a means to circumvent memory constraints during
training and as a data augmentation strategy, we subsample
20-step “short” tours from the full-scale exploration tours
in our dataset (see Sec. 3, sub-heading, “Generating “short”
tours for training” in the main paper for more details). Dur-
ing training, our model learns to build top-down maps (of
smaller spatial dimensions: 250 x 250 than that of the full
scene) and localize answers to questions on the map from
these 20-step tours. During evaluation, we test its gener-

alization to building full-scale maps from the entire explo-
ration trajectory (and not just 20-step tours). We presented
results (both quantitative as well as qualitative) for this full-
scale generalization in the main paper. In this section, for
completeness, we also provide results of all our models and
baselines on the 20-step “short tours” in Tab. 1. We also
show qualitative examples of predictions made by our agent
for these 20-step short tours in Fig. 5. All trends observed
and discussed in the main paper (Section 6) hold true for
Tab. 1 as well.

We’d like to reiterate (from Section 3 in the main paper)
that generating and using these “short tours” merely hap-
pens during train. The focus of our task (as well as the sub-
ject of all our evaluations/analysis in the main paper) is on
the full-scale exploration tours and maps for entire scenes.

4. Additional Qualitative EMQA Results

We show additional qualitative results on both “short”
(Fig. 5) and “full” (Fig. 6) tours for our proposed EMQA
model.

5. Sim2Real: Real-world RGBD Results

Recall that Fig. 4 (c) in the main paper had qualita-
tive results of evaluating our model on a more challenging,
real-world RGB-D dataset [10] with imperfect depth+pose
and camera jitter. Here, we provide some additional details
about the same.

We perform zero-shot evaluation tests on this dataset —
we construct scene memories using our pre-trained SMNet
[2] model, hand-craft questions relevant to the scene and
generate prediction output using our pre-trained LingUNet-
based question-answering module (no component of our
model was fine-tuned on [10]). We pre-processed the input
video by subsampling the original frame sequence (select-
ing every 10th frame). We discarded visually blurry images
by looking at the variance of the Laplcaian in the RGB im-
age. Any image with a variance below a threshold of 100
is discarded. Data inputs are grouped into tuples of (RGB,
Depth and Pose) using timestamps. We allow for a max
timestamp difference of at most 0.02s between modalities.
The depth frame is further pre-processed through a binary
erosion step with a circular element of radius 20 pixels.

In the answer to the question *where did you first see
the chair?’ (Fig. 4 (c) in the main paper), we see the first
two chairs (at the bottom) of the map being detected. The
third chair on the other side of the desk is also detected.
Although it is not, strictly speaking, the first instance of a
chair seen in the video, that chair appears at the beginning
of the video. In the answer to the question where did you
last see the chair’, that third chair at the top of the map is
not detected this time. The bottom two chairs are detected
again because there are also seen last in the video. In the
answer to the question ‘where did you see the chair’, three

Top-down map output space

Egocentric pixel output space

Method TIoU Recall Precision IoU Recall Precision

LangOnly 15.09 +022 2236 +026 29.56 +04i 1523 +023 23.19 £027 29.61 +043
EgoSemSeg 27.51 +032 39.24 1045 55.53 +oss 29.05 +036 3945 +o0s0 59.57 + o055
SMNetDecoder 30.76 +037 45.06 £o46 54.51 tom 31.36 +031 45.86 £023 55.52 +os4
EgoBuffer-Avg [4] 2.46 + o0 4.53 +or7 8.10 + o026 2.18 + o009 4.29 +o1s 7.98 + 028
EgoBuffer-GRU [1] 1.39 + o006 2.02 o 9.09 +o02 1.34 o007 2.08 +o12 9.36 £ 02
EgoBuffer-Attn [5] 2.18 +o007 3.67 +o12 10.08 + 024 2.01 £o07 3.66 +o.12 10.15 + o026
Ours 36.09 +os3 48.03 to62 53.04 +os 36.66 + 027 49.64 +oa 53.12 o3
Ours (+temporal) 37.72 1045 49.88 +oss 53.48 foe 38.29 1044 51.47 £oss 53.48 +o50

Table 1. EMQA results on “short tours” for our proposed model and baselines in the “top-down map” and “egocentric pixel” output space.

Ground Truth

Prediction

Where did you
see the cushion?

Where did you first
see the cushion?

Where did you last
see the cushion?

Where did you
see the chair?

Where did you first
see the chair?

Where did you last
see the chair?

Ground Truth

Prediction

Figure 5. We provide qualitative results of our proposed EMQA agents grounding answers to questions onto the top-down environment

floorplan for “short” tours.

chairs are detected. The fourth one with the stuffed animal
on it has been missed.

6. Sim2Real: Noisy Pose Experiments

In this section, we discuss the impact of localization
noise on the construction of scene memory representations
and downstream question answering performance.

6.1. Noise Models

As discussed in Sec. 6 of the main paper (subsec:
Sim2Real Robustness), we investigate the impact of two
qualitatively different types of noise — (1) noise sampled
from a real-world robot [9], independently added to the
pose at each step along the ground truth trajectory, and (2)
cumulatively integrating per-step noisy pose change esti-

Ground Truth

Prediction

Where did you
see the bed?

Where did you
first see the bed?

Where did you
last see the bed?

Where did you Where did you

Where did you
last see the sofa?

Ground Truth

Prediction

see the sofa?

first see the sofa?

Figure 6. We provide additional qualitative results of our proposed EMQA agents grounding answers to questions onto the top-down

environment floorplan for “full” tours.

mates derived from a visual odometry-based egomotion es-
timation module.

In this section, we discuss how we implement and inte-
grate these two noise models into the pose at each step of
our guided exploration tours.

Independent Noise. Here, we leverage the actuation noise
models derived from the real-world benchmarking [7] of a
physical LoCoBot [9]. Specifically, this comprises the lin-
ear and rotational actuation noise models. The linear noise
distribution is a bi-variate Gaussian (with a diagonal covari-
ance matrix) that models localization inaccuracies along the
X (orthogonal to the heading on the ground plane) and Z
axis (direction of heading on the ground plane), whereas
the rotational noise distribution is a uni-variate Gaussian for
the agent’s heading. We integrate these noise models in the
guided tours by independently adding noise to each ground
truth pose of the assistant along the tour. Additionally, we
implement this setup with two levels of noise multipliers —
0.5x and 1x to simulate varying intensities of noise being
added. An example of a trajectory with this noise model
has been visualized in Fig. 5(a) in the main paper.

Cumulative Noise. Beyond adding noise to existing ground
truth trajectory pose, we additionally investigate a setting

where our model is given an initial pose and from thereon,
it estimates per-step changes in its pose solely from ob-
servations (visual odometry) and integrates these predic-
tions along the trajectory, thereby maintaining an up-to-date
(though noisy) estimate of its current pose

In contrast to the independent addition of noise to the
ground truth pose at each tour step, this is a more challeng-
ing setting where the assistant maintains and works with
a pose estimate completely on its own. As a result, noise
picked up at each step (e.g. during collisions) cascades
and accumulates throughout the rest of the trajectory. We
present an example of a noisy egomotion trajectory in Fig.
5(b). We now describe the visual odometry model that we
adapt from [12] and use to estimate per-step pose changes.

6.2. Visual Odometry Models

Model Architecture. The visual odometry (VO) model
takes as input a pair of consecutive RGB-D observations
(04, 0441) and estimates three relative pose transforma-
tion components — the translation along X and Z axis, and
the rotation angle (¢). For our experiments, we employ a
stripped-down (bare-bones) version of the architecture pro-
posed in [12]. The architecture includes a Resnet-18 [6]
feature extractor backbone followed by two fully-connected

(FC) layers with Dropout. We do away with the soft top-
down projection and discretized depth inputs, and only use
RGB+Depth observation pairs from successive steps. Ad-
ditionally, as suggested by the authors [2], we train action-
specific models to deal with the differences in the action
distributions.

Dataset Preparation. The pre-trained VO models provided
by the authors of [12] were trained on the Gibson dataset of
3D scans [11]. In contrast, we work with scenes from the
Matterport3D [3] dataset. More importantly, these models
were trained in a setup that used agent actuation specifica-
tions (forward step: 25cm, rotation angle: 30°) that are sig-
nificantly different from those used in our exploration tours
(forward step: 10cm, rotation angle: 9°). Therefore, a zero-
shot transfer of models pre-trained by the authors in [12] to
our setup is likely to not work well. We qualitatively verify
this in Fig. 7. Note that the trajectory formed by integrating
predictions from a pre-trained VO model applied directly to
our setup doesn’t match the original trajectory at all.

— VO model (pre-trained [36])
— VO model (re-trained)
— GT trajectory

V.
/ [L

7 R —

Figure 7. Difference in egomotion predicti\ons between the pre-
trained VO model provided by the authors of [12] and the model
we retrained on a custom dataset of 100k data points from Matter-
port3D [3] scenes. Apart from the difference in the scene datasets,
the provided pre-trained models were trained under significantly
dissimilar actuation specifications. This discrepancy called for a
re-training of the VO model under the guided tour setup we use [2].

To remedy this, we retrain the VO models from [12] on
scenes from the Matterport3D dataset and under the actua-
tion specificns of EMQA. To do that, we first create a sep-
arate VO dataset in Matterport3D [3]. For generating the
dataset, we follow the protocol laid out in [12]. We sample
(uniformly, at random) two navigable points in the scene
and compute the shortest navigable path between the two
points. Then, we sample (again, uniformly, ar random) con-
secutive observation pairs along these shortest-path trajec-
tories. Using this method, we create a dataset of 100k and
20k training and validation data points.

Training and Evaluation. Following the training regime
proposed by [12], we train our model by jointly minimizing
the regression and geometric invariance losses from [12].
Fig. 7 (blue) shows the trajectory generated via integra-
tion of predictions from the retrained VO model. We note
a significant qualitative improvement in the trajectory as it
much closely resembles the ground truth trajectory. In ad-

dition to that, in Tab. 2, we also quantitatively analyze the
improvements gained through retraining by comparing the
average deviation in the trajectories (as measured by the
average over per-step pose RMSEs) predicted via the pre-
trained and the re-trained VO models. We note that with
a retrained VO model, we significantly improve the quality
of our trajectories by getting ~ 6x less deviation with the
ground truth trajectory.

For completeness, Tab. 2 also contains metrics for tra-
jectories generated by independently adding noise to the
ground-truth pose. It is evident that both (a) increasing the
intensity of independently added noise and (b) moving from
independent to VO-based cumulative noise leads to larger
deviations in the predicted trajectories from the ground truth
(~1.3x and ~15x increase respectively).

Method RMSE (X axis) RMSE (Z axis)
Noise 0.5x (independent) 0.068 0.066
Noise 1x (independent) 0.09 0.088
Egomotion (re-trained) 1.448 1.346
Egomotion (pre-trained [12]) 11.074 10.386

Table 2. Average absolute and relative differences between the
ground truth poses and their corresponding noisy estimates at each
step. Here, we highlight the improvement in egomotion estimation
by retraining the VO model for our setup. We also note how, due
to its cumulative nature (accumulating noise along the trajectory),
the error metrics are much higher for the egomotion predictions
compared to the independent noise models (where noise is inde-
pendently added to the pose at each step).

6.3. Evaluating EMQA Models on Noisy Pose Data

In the discussions so far, we talked about adding noise
(of various types and intensities) to the pose information
in our dataset. In this section, we first investigate the per-
formance of our models under the noisy settings and then,
make a case for re-training our EMQA models so that they
learn to adapt to noisy pose inputs.

Towards that end, we plot the improvement in perfor-
mance upon retraining across three setups in Fig. 8. In each
of the sub-figures, we first plot the original model’s perfor-
mance (trained and evaluated using ground truth pose i.e.
train=GT, eval=GT). This is followed by taking the same
model (trained using ground truth pose) and evaluating it
under the noisy pose setting (i.e. train=GT, eval=Noiselx).
And finally, we re-train our model so that it adapts to the
noise and then evaluate this re-trained model in the noisy
setting (train=Noise1x, eval=Noise1x).

We now compare the above settings across three experi-
ments.

1. Semantic map prediction performance of SMNet (Fig.
8 (a)): Our method utilizes scene memory representations
learnt by SMNet for downstream question answering. As

Recovering performance loss under noisy settings by retraining models

(@) SMNet Semantic Map
Prediction Performance

(b) SMNet Decoder Baseline
QA Performance

(c) EMQA (Ours)
Performance

o
CHERT N

train=GT train=GT train=Noise1x train=GT train=GT train=Noise 1x train=GT train=GT train=Noise 1x
eval=GT eval=Noise1x eval=Noise1x eval=GT eval=Noise1x eval=Noise1x eval=GT eval=Noise1x eval=Noise1x
H oU [l Precision [Recall

Figure 8. Recovering performance loss under noisy settings in semantic map prediction (a) and question answering (b,c) by retraining
SMNet and LingUNet on noisy pose data. In each sub-figure, we observe a dip in the evaluation metrics of the ground truth (GT) pose-
trained model upon adding noise to the input pose. This drop is partially recovered from, by retraining the model(s) on noisy data.

Qualitative examples: Semantic map predictions

train=GT
eval=GT

train=GT
eval=Noise 1x

train=Noise 1x
eval=Noise 1x

Figure 9. We show qualitative examples of semantic map predictions for the three experiments described in Sec. 6.3 — (1) our model
trained and evaluated using ground truth pose (left), (2) our model trained using ground-truth pose, but evaluated in the noisy pose setting
(middle) and (3) our model retrained using noisy pose (right). We see sharper boundaries and less label splatter upon retraining with noise.

a result, comparing the semantic map predictions serves as
a proxy for the quality of scene representations. Here, we
observe a 43% drop in IoU on adding noise and evaluat-
ing using the original model. Upon retraining SMNet with
noisy data, we see a 6% gain on the same metric.

2. Question answering (QA) performance of SMNet De-
coder baseline [2] (Fig. 8 (b)): Here, we plot the down-
stream question-answering performance for the SMNetDe-
coder baseline (our best performing baseline from Sec. 5 in

the main paper). We observe a 41% drop in IoU on adding
noise and evaluating using the original model. However,
we see a 19% increase on the same metric when we retrain
SMNet on noisy data.

3. Question answering (QA) performance of our method
(Fig. 8 (c)): Finally, we plot the downstream question-
answering performance for our proposed method. Ini-
tially, on integrating noise and evaluating using the original
model, we observe a 39% drop in IoU performance. How-

ever, upon retraining SMNet and LingUNet, we see a 10%
increase on the same metric.

Across all the three experiments, we observe that (a)
when models trained using privileged, oracle pose informa-
tion are evaluated with noise in pose, their performance (un-
derstandably) drops and (b) we are able to recover the drop
by re-training so that the model learns to adapt to its noisy
inputs. We also qualitatively demonstrate the improvement
in semantic map predictions obtained through a re-training
of our models to adapt to noisy pose in Fig. 9 (note the
sharper boundaries and reduced label splatter).

References

[1] Bram Bakker. Reinforcement learning with long short-term
memory. In NIPS, pages 1475-1482, 2001. 5

[2] Vincent Cartillier, Zhile Ren, Neha Jain, Stefan Lee, Irfan
Essa, and Dhruv Batra. Semantic mapnet: Building allo-
centric semantic maps and representations from egocentric
views, 2017. 1,4,7, 8

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-
d data in indoor environments. International Conference on
3D Vision (3DV), 2017. 1,7

[4] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse,
Fabio Viola, Ari S Morcos, Marta Garnelo, Avraham Ru-
derman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,
et al. Neural scene representation and rendering. Science,
360(6394):1204-1210, 2018. 5

[5] Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio
Savarese. Scene memory transformer for embodied agents
in long-horizon tasks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
538-547,2019. 5

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. 6

[7] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexan-
der Clegg, Erik Wijmans, Stefan Lee, Manolis Savva, Sonia
Chernova, and Dhruv Batra. Sim2real predictivity: Does
evaluation in simulation predict real-world performance?
IEEE Robotics and Automation Letters, 5(4):6670-6677,
2020. 6

[8] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV), Oct 2017. 3

[9] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala,
Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav
Gupta. Pyrobot: An open-source robotics framework for re-
search and benchmarking. arXiv preprint arXiv:1906.08236,
2019. 5,6

[10] Jiirgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram

Burgard, and Daniel Cremers. A benchmark for the eval-
uation of rgb-d slam systems. In 2012 IEEE/RSJ Interna-

(11]

[12]

tional Conference on Intelligent Robots and Systems, pages
573-580. IEEE, 2012. 4

Fei Xia, Amir Roshan Zamir, Zhi-Yang He, Alexander Sax,
Jitendra Malik, and Silvio Savarese. Gibson env: Real-world
perception for embodied agents. CoRR, abs/1808.10654,
2018. 7

Xiaoming Zhao, Harsh Agrawal, Dhruv Batra, and Alexan-
der G Schwing. The surprising effectiveness of visual
odometry techniques for embodied pointgoal navigation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 16127-16136, 2021. 6, 7

	. Additional Dataset Details
	. Additional Model+Training Details
	. Additional Quantitative EMQA Results
	. Additional Qualitative EMQA Results
	. Sim2Real: Real-world RGBD Results
	. Sim2Real: Noisy Pose Experiments
	. Noise Models
	. Visual Odometry Models
	. Evaluating EMQA Models on Noisy Pose Data

