
APPENDIX
5.1. Training Details

ImageNet → Scenes → CUB → Flowers we use images downsampled and cropped at 64×64 (224×224 size results are
shown in Sec. 5.2) in this task sequence. We train a ResNet-18 [16], using AdamW [29] optimizer with a learning rate (LR)
of 1e-5 and a weight decay of 5e-4. We first train the model on ImageNet via (1) CE loss, or (2) SupCon loss for 500
epochs. Next, for each task in the sequence, we train the model via early stopping [6], and report the observed accuracy over
the test set (see Tab. 1).

The LP classifiers are trained using the same optimizer and weight decay value. However, for faster convergence, in this
setting, we use a cosine LR scheduler [28] with an initial LR of 1e-4. The results of LP classifiers are reported on the
ImageNet validation set. All the training images in this section undergo, random crop, random horizontal flip, and color jitter
of 0.5.

SplitCIFAR100, MiniImageNet, ImageNet32 For our SplitCIFAR100 10-task sequence, MiniImageNet 20-task se-
quence, and ImageNet32 200-task sequence we use SGD optimizer with LR of 0.05, momentum of 0.9, and weight decay
of 1e-4. We train the models for 50 epochs for SplitCIFAR100 and MiniImageNet, and for 80 epochs for ImageNet32. The
augmentation pipeline consists of random crop, random horizontal flip, and color jitter of 0.5. For the LP classifiers, we train
each for 20 epochs, using AdamW [29] optimizer with a LR of 1e-3 and a weight decay of 5e-4.

For the SplitCIFAR10 2-task sequence from [38] we use the hyper-parameters and training conditions mentioned in [38]
for both VGG [45] and ResNet [16] architectures. For the LP classifiers, we train each for 70 epochs, using AdamW [29]
optimizer with a LR of 1e-3 and a weight decay of 5e-4. For LP training we use data augmentation in all cases, except
the SplitCIFAR10 to obtain the most accurate measure of the model’s ability to linearly separate the data of interest. For
SplitCIFAR10 2-task we choose not to use any data augmentation because the source result ( [38]) does not rely on data
augmentation for training. We opt not to use data augmentation in our LP evaluation for a fair comparison.

5.2. ImageNet→ Scenes→ CUB with 224 × 224: Reproducing Li et al.
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Figure 6. Performance on ImageNet during the transfer sequence (Ima-
geNet→Scenes→CUB) using VGG-16. We observe that although observed accuracy
heavily degrades, the LP accuracy for finetuning does not decay as drastically and can
rival LP accuracy of methods such as LwF and EWC. We evaluate methods which do not
rely on storing data from Task 1 to replay during training. Note EWC with λ = 8k is
the best performing method in terms of LP and observed accuracy, however it does not
perform well on the current task (see Tab. 6).

Method
Acc. Acc.

Scenes CUB

■ Finetuning 74.70% 74.39%
■ LwF 74.78% 75.23%
■ EWCλ:0.5k 74.70% 74.72%
■ EWCλ:8k 72.69% 71.44%

Table 6. Observed accuracy of
the current task in the sequence
ImageNet→Scenes→CUB using
VGG-16 architecture. Although
EWCλ:8k attains relatively poor
performance on the current task,
it achieves the highest LP and ob-
served accuracy for the previously
seen tasks (see Fig. 6).

For ease of experiments, in Sec. 4.1 we have used a lower resolution, 64×64, a light ResNet-18 model, and a modern
rapid training scheduler. On the other hand in this section we reproduce the results of the original paper (Li et al.) [26] using
a VGG-16 model and 224×224 input size and then carry out our LP analysis further confirming our observations. We take
the setting of [26], which considers the ImageNet [42] transfer to various datasets, in particular CUB [46], and Scenes [37].
We use the same model architecture (VGG-16) and training procedures described in [26], which proposes LwF, closely
reproducing their ImageNet → Scenes as the first step in the sequence (see Tab. 7). We also include an EWC baseline under



two conditions: (a) large λ value (λ = 8k), so the network is inclined to preserve the knowledge important to the previous
tasks, and (b) small λ value (λ = 0.5k), so the network is encouraged to perform competitively on the current task. The
results are shown in Figure 6 and Table 6.

We first note that our results for the first task switch are consistent with those reported in [26] (see Tab. 8). Fig. 6 reveals
that although the forgetting in terms of the traditional measure is high for finetuning compared to LwF (as shown in [26]), the
LP accuracy of these methods suggest a much less drastic forgetting. Furthermore, the LP performance across finetuning and
other methods is not as drastically different as their respective observed accuracies are. Indeed, we observe that on the third
task, finetuning outperforms LwF in representation forgetting on ImageNet. Similarly EWC does not clearly outperform naive
finetuning. For example, if using one hyper-parameter for the regularization term the performance closely tracks finetuning.
On the other hand using λ = 8k we observe the best LP performance on ImageNet through the task sequence but degraded
current task performance as seen in Tab. 6.

ImageNet (T-1) → CUB (T-2)

Obs. T-2 Acc. Obs. T-1 Acc.

Finetune- [26] 73.1% 50.7%
Finetune-Ours 74.5% 50.9%
LwF- [26] 72.5% 60.6%
LwF-Ours 75.7% 63.6%

ImageNet (T-1) → Scenes (T-2)

Finetune- [26] 74.6% 62.7%
Finetune-Ours 74.7% 53.6%
LwF- [26] 74.9% 66.8%
LwF-Ours 74.8% 65.3%

Table 7. Reproduction of the results reported in [26]. Note that we
observe a slight difference in our reproduced results due to stochas-
ticity of training neural networks, and removing the warm-up step.

Observed Acc. on ImageNet: 71.59%

ImageNet (T-1) → CUB (T-2)

T-1 Acc. @ T-2 LP Acc. @ T-2 T-2 Acc.

FT 50.89% 64.49% 74.51%
LwF 63.58% 67.23% 75.65%
EWCλ:8k 60.28% 67.46% 72.70%
EWCλ:0.5k 50.78% 63.99% 74.53%

ImageNet (T-1) → Scenes (T-2)

FT 53.56% 66.39% 74.70%
LwF 65.27% 67.98% 74.78%
EWCλ:8k 64.14% 68.50% 72.69%
EWCλ:0.5k 54.61% 65.94% 74.70%

Table 8. Forgetting of Task 1 measured via optimal linear probes
(LP). Note that although the forgetting is much higher for finetun-
ing compared to LwF, the LP accuracy is nearly identical, espe-
cially for the ImageNet → Scenes task, suggesting that LwF does
not improve over naive finetuning in terms of forgetting knowledge
acquired on ImageNet.

Although we followed the training procedure as closely as possible to the ones reported by [26], the results are slightly
different from the ones reported in [26] due to (a) not using the task-head warm-up step, where the backbone network is first
frozen and the newly added task head is trained until convergence (warm-up), and then the entire network is trained until
convergence, and (b) stochasticity of training neural networks. Table 7 highlights these differences.

5.3. Comparing Overall Representation Improvement
In addition to representation forgetting, we consider also measuring how much a representation improves overall as seen

by a linear probe trained and evaluated on data from the union of all current and future tasks. We can evaluate this by training
at each step in the sequence an “All-LP”, that is a linear probe trained on all the training data and evaluated on all test data.
A natural baseline to compare such an approach to is splitting iid data into 10 subsets trained in sequence (we denote this
iid-split). The results of this evaluation are shown for SplitCIFAR100 in Figure 7. We observe again that SupCon exceeds
LwF methods and competes with the small replay-sized ER method.

5.4. Representation Forgetting for Other Tasks
Complementing the results in Sec. 4.1, we report the observed and LP accuracies for methods when measured for tasks

beyond Task 1. Specifically for SplitCIFAR100 we show trends for Task 2, 3, and 5 in Fig. 8. We observe similar trends as
reported for Task 1 in Sec. 4.1.

5.5. Effect of Increased Model Capacity for SupCon
To complement the results in Sec. 4.2, we also compare finetuning with SupCon and CE in terms of its properties on

wide and deep networks. Since SupCon training does not have an observed accuracy we compare only the LP performance



unlike Sec. 4.2. From Tab. 9, we observe that similar to CE the LP performance improves with depth and exceeds that of
LwF [26], and nearly matching ER-M5 with greater width.
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Figure 7. All-LP anytime evaluation plot on SplitCIFAR100 10-task se-
quence. All-LP is a probe trained on all, i.e. seen and unseen tasks,
training data and evaluated on all test data. We compare this with split-
ting iid data into 10 subsets trained in sequence, denoted as iid-split.

Task 1 LP LP Acc. All
T=10 T=10

RN18, Width=32 70.4 74.0
fine(SupCon) RN18, Width=128 74.3 77.1

RN101, Width=32 71.9 75.4
RN18, Width=32 64.8 70.8

fine(CE) RN18, Width=128 70.5 74.2
RN101, Width=32 67.9 72.4
RN18, Width=32 74.2 75.7

ER-M5 RN18, Width=128 75.6 77.3
RN101, Width=32 74.5 76.1
RN18, Width=32 76 76.4

ER-M20 RN18, Width=128 78.8 80.1
RN101, Width=32 77.1 77.5
RN18, Width=32 70.1 73.4

LwF RN18, Width=128 74.8 76.7
RN101, Width=32 71.0 74.6

Table 9. Final Accuracy of 10 task SplitCIFAR100 se-
quence with variable width and depth in the offline setting.
M indicates the number of samples per task used in the ER
buffer. We compare SupCon LP to others showing it has
similar improvements in width and depth to non-finetuning
methods.
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Figure 8. LP and Observed accuracy for Task 2 (upper left), 3 (upper right), and 5(bottom) on 10-Task SplitCIFAR100.
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