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A. Derivation of SLERP in d-dim case
Let us denote two vectors of unit length:


x,y ∈ Sd

‖x‖2 = ‖y‖2 = 1

< x · y >= cos θ, θ ∈ (0, π)

(1)

where < x · y > is the inner product between vector x
and y, with θ as the angle between them on a d-dimensional
unit sphere Sd. With slight abuse of notations, we use x to
refer to both a point on a sphere, when talking about the
sampled d-dimensional point, and also a vector from the
origin of this sphere, when talking about trigonometric op-
erations.

Let us call the point z ∈ Sd lying on the interpolation
path from x to y if:


‖z‖2 = 1

< z · x >= cosφ, φ ∈ [0, θ]

< z · y >= cos(θ − φ)

(2)

Then z can be found via the Spherical Linear Interpola-
tion (SLERP) formula:

z =
sin(θ − φ)

sin θ
x +

sinφ

sin θ
y (3)

It can be shown through rather simple but rigorous
trigonometry that Eq. 3 does indeed satisfy all the properties
in 2.

Initially, SLERP arose in the task of 3D rotations
for solid objects [8] and Eq. 3 can be naturally derived
from the 4D rotation intuition via quaternions. However,
Eq. 3 is still valid for d-dimensional vectors, even though
quaternion intuition is not applicable anymore. Next, we
prove interpretation used in this equation.

Derivation
In our derivation we will only base on properties of Eq. 2.

One can always search for z as the linear combination of z‖,
the part that lies in the span of (x, y) (dimensionality 2), and
z⊥, the part that is orthogonal to it (dimensionality d− 2):

z = z‖ + z⊥ = αx + βy + z⊥ (4)

Using Eq. 2, one can find the connection between α and
β coefficients:

cosφ =< z · x >
=< (αx + βy + z⊥) · x >
= α < x · x > +β < y · x > + < z⊥ · x >
= α+ β cos θ + 0

cos(θ − φ) =< z · y >
=< (αx + βy + z⊥) · y >
= α < x · y > +β < y · y > + < z⊥ · y >
= α cos θ + β + 0

(5)

The equations in the system 5 are independent and linear
with respect to α and β, hence, we can solve it and obtain
the desired coefficients:

α =
sin (θ − φ)

sin θ

β =
sinφ

sin θ
(6)

Now, let us look at the norm of the vector z. As the
components z⊥ and z‖ are orthogonal to each other, the
squared norm of z is the sum of the two:

‖z‖2 = ‖z⊥‖2 + ‖z‖‖2 = 1 (7)

The norm of the z‖ can be shown to be equal to 1 (ex-
plicitly using computed coefficients of 6):

‖z‖‖2 = ‖αx + βy‖2 = α2 + β2 + 2αβ cos θ = ... = 1
(8)

From 7 and 8, one can conclude that the norm of z⊥
is 0. Hence, the interpolant point z does indeed lie in the
two-dimensional hyperspace of x and y.

One can reparameterize the angle φ as t
T θ where t goes

from 0 to T (as in the formula in the main paper). Then the
unit vector z can be seen as smoothly “rotating” from x to
y in d-dimensional space.

B. Ablation on Recall experiments
Sampling rarer poses from the data. Sampling uni-
formly across the ground-truth data can cause a bias towards
mean poses, hence, hindering recall metrics. To overcome
this issue and apply the same sampling for all prior distribu-
tions, one can sample from the t-SNE embedding space, as



Figure 1. Various Recall strategies. Higher means better in all
charts. Left: Results of the main paper, experiments with data
from the Train set are drawn with solid lines, and from the Test set
with dashed lines. Datapoints are sampled uniformly. Right: 1)
Sampling from t-SNE embedding space instead of uniform sam-
pling from the (Train) dataset does not affect the order between the
models (solid lines). 2) Tuning covariance coefficient while sam-
pling from the latent space of unbounded models indeed improves
Recall for VPoser (at λ = 2, dashed line), although does not bring
any noticeable change for GAN-N model.

it would diminish the clustering effect and let rare poses be
sampled more often. We repeat the Recall experiment with
the aforementioned technique. We search for the nearest
neighbor for each uniformly sampled point in t-SNE space.
The results are shown in Fig. 1 with solid lines. Compared
to results from the main paper, we see that models have
lower recall but the order between the models remains the
same.

Sampling rarer poses from the latent space. In the main
paper, for VPoser we use the standard sampling from a
normal distribution (with the covariance matrix λI , where
λ = 1), as also done in the original paper [6]. However,
the sampling strategy can affect the diversity of the ob-
tained samples. For example, sampling with the covariance
λ > 1 would give rarer poses more often and vice versa. We
experimented with sampling for unbounded models from
N (0, λI) with λ values in the range [0.5, 100]. We plot the
results for the best λ value in Fig. 1. Sampling with higher
λ picks unusual poses more often, increasing Recall up to
a point. We found that λ = 2 — denoted by a dashed line
in the figure — yields the best Recall in terms of mean and
median statistics for the VPoser model. Yet our GAN model
still dominates. Increasing λ for the GAN-N model does not
bring any noticeable improvement.

C. Interpolation sequences
In Fig. 2 we show more interpolation sequences for dif-

ferent generative models: GAN-based GAN-S, GAN-U,
GAN-N and VAE-based VPoser [6]. The procedure of sam-
pling and interpolation is the same as in the manuscript.
Also, in Fig. 3 we provide the transition distances that corre-
spond to the interpolations in Fig. 2. For GAN-based mod-

els transition distances for the sampled pairs lie in the range
[10−3, 10−2] mm (per-vertex distance), which is in much
smaller range than VPoser. Note that the average result for
all samples is provided in the main paper (Fig.5). It is clear
that VAE-based VPoser [6] applies most of the transition
either at the beginning or at the end of interpolations, while
GAN-based models, especially GAN-S and GAN-U, pro-
vide smooth interpolations.

SLERP for unbounded latent spaces. In the main paper,
while experimenting with interpolation in unbounded mod-
els, VPoser and GAN-N, we perform linear interpolation.
With non-zero probability, the linear interpolation between
the two vectors passes close to 0. While in the reality during
training, it is highly unlikely to sample the vectors close to
zero vector. Even more than that, the norm of the Gaussian
vector is distributed according to the χ2

d distribution, which
has a non-zero mean. It implies that such high-dimensional
vectors must concentrate around thin spherical shells (with
radii close to the mean) and have low probability of liv-
ing around zero point. It might be then concluded that for
the unbounded models used in the present paper, VPoser
and GAN-N, the linear interpolation (e.g., through close-to-
zero space) is less sensible than the spherical interpolation
(through denser regions along spherical shells).

We carry out the corresponding experiment, comparing
interpolation smoothness for unbounded models with spher-
ical and with linear interpolation. Fig. 4 provides the com-
parison between linear and spherical interpolations. Con-
trary to the chi-squared intuition, the linear interpolation re-
sults for unbounded models are in fact smoother than the
SLERP ones.

It is worth noting that it is not trivial to explore the struc-
ture of high-dimensional spaces and explain why linear in-
terpolation works better in this case. We also observe inter-
polations in VAE tend to stick to one pose and then jump
to another. Our guess is that the continuous and smooth
behaviour of neural network functions might fill the gaps
between feasible points to create poses in all cases, how-
ever, the generated poses might not be transitioning linearly
from one pose to another. We leave a provable clarification
of this phenomenon for future research.

Why GAN interpolation is smoother than VAE. The re-
sults of this experiment both quantitatively (Table in the
main paper) and qualitatively (Fig. 2) indicate that VAE’s
interpolations are much more abrupt than the ones of pro-
posed GAN models (especially, GAN-S). VAEs behave like
a step-function when interpolating between poses as the
generated samples can jump suddenly from one pose to an-
other. We believe this is due to the training mechanism of
the decoders in VAEs, which maps multiple random sam-
ples, through noise injection, to the same exemplar. By con-
trast, in GANs the generated pose does not have a fixed tar-
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Figure 2. Examples of interpolations for different generative models, 10 intermediate interpolants each. Corresponding transition distances
(100-step interpolations) are provided in Fig. 3.



(a) Transition distances for the sequence in Fig. 2 top.
Smooth for GANs, abrupt for VAE.

(b) Transition distances for the sequence in Fig. 2 middle.
All GANs provide hardly smooth yet physically plausible
interpolation, while VPoser [6] smoothly moves the head
of the body and then ”jumps” to the final pose.

(c) Transition distances for the sequence in Fig. 2 bottom.
GAN-N model demonstrates less smooth interpolations
than bounded GAN models, closer to VPoser [6] and lo-
cally stucks at one pose (transiton distances∼ 10−5 mm
per vertex).

Figure 3. Mean per-vertex transition distances of different generative models for the samples presented in Fig. 2. Each interpolation path
takes 100 steps from start to end, while the corresponding images in Fig. 2 show only each 10-th step. It is clear that VAE-based VPoser [6]
provides abrupt transitions, while GAN-based models provide smoother transitions in the output space.

Figure 4. Average normalized mesh interpolations. Applying
linear interpolation to samples from Gaussian distribution (for
VPoser and GAN-N models) is superior over the spherical se-
quencing. Solid lines are taken from the main paper.

get as the model is free to map the latent to any meaningful
sample from the pose distribution, validated by the discrim-
inator. This yields a better latent organization. In GAN-S,
this is further enforced by the structure of the latent space,
which is uniform and isotropic.

D. Image-to-Mesh regression
We demonstrate qualitative results of injecting our mod-

ule GAN-S into the pretrained HMR architecture and fine-
tuning it on recent in-the-wild pseudo ground-truth dataset
COCOEFT [2] (see Sections 3.3 and 4.4 in the main paper
for details). We show the worst predictions of our model on
H3.6M [1] validation subset, chosen according to Protocol
2 (corresponding to the results in Table 4 of the main paper).

E. GANs for shape parameters
The SMPL model [4] is parametrized by two sets of pa-

rameters: pose Θ and shape β. In the main paper, we ex-
plore the properties of the former for a fair comparison with

VPoser [6] that only explores the pose prior, while the latter
stays out of context. Despite having relatively constrained
shape parameters in SMPL, by using a data-driven PCA
model, the unbounded nature of PCA does not restrict the
SMPL output to always be plausible.

Luckily, the GAN-based approach that we used for poses
can easily be applied for shapes as well. The only difference
is the choice of architecture for the shape discriminator.

To provide a joint model for pose and shape, we explore
two GAN variants (using spherical input space prior):

• Disentangled “shape-only” (“GAN-β”) and “pose-
only” (“GAN-Θ”) models.

• Entangled “shape+pose” (z 7→ β,Θ), denoted as
“GAN-βΘ”.

In the first case, we train an independent shape model
GAN-β and use it together with GAN-Θ, while in the sec-
ond case, we train both jointly, using a shared z space.
Note that in the main paper all GAN-based models are of
a kind “GAN-Θ”, as they map input points to the SMPL-
pose space.

It is important to note that for training GAN-{S,U,N}
models we used AMASS [5] dataset, which contains an
abundant number of body poses. However, the number of
subjects (different body shapes) is very few (346 in total).
To overcome this issue, for training shape-oriented models
we choose another dataset, SURREAL [9], which is com-
posed of synthetic SMPL bodies. In SURREAL, the shapes
β are sampled from CAESAR dataset [7], which contains
about 4k different shapes. This number is still very limited,
compared to tens of millions of Θ-poses in AMASS, how-
ever, we are still able to train generative models as a proof
of concept.



Figure 5. Mesh predictions in Section 4.4 experiments of the main paper with the highest (“worst”) P-MPJPE on the subset of H3.6M [1]
validation set (according to H3.6M Protocol 2). Examples are split in triplets: left - the input image, middle - the predicted mesh (with
predicted rotation), right - the same mesh rotated by 90◦ along vertical axis. The error decreases from left to right and top to bottom
(top-left sample obtains the highest P-MPJPE value).

E.1. Disentangled GAN-β and GAN-Θ

Trained GAN-β (z1 7→ β) coupled with trained GAN-
Θ model (z2 7→ Θ, from the main paper) might serve as a
full prior of the original SMPL [4] model. This approach
learns disentangled priors for pose and shape, in the same
spirit as SMPL that represents pose and shape parameters
independently. However, the realistic pose and shape are
not completely disentangled. It means that pose and shape
independently may account for plausible humans but com-
bined together give a body with self-interpenetrations, as
illustrated in Fig. 7.

As for the architecture of the shape discriminator, we fol-
low HMR [3] and use a 2-layer MLP.

E.2. Entangled GAN-βΘ

To train a GAN for pose and shape together, we use the
discriminators of GAN-Θ (GAN-S in the main paper) and

GAN-β together, and train a generator with a shared input
space z. In this model, we also use a “β+ Θ” discriminator
that penalizes the full generated SMPL vector. In total we
have K + 1(pose) + 1(shape) + 1(pose+shape) discrimina-
tors.

The examples of random interpolations in the input space
of z can be found in Fig. 6. As pose and shape are entangled
together, it prevents utilizing such a mixed model in appli-
cations where one of these characteristics needs to remain
fixed.

At the same time, not every sample corresponds to a
plausible body (even with self-interpenetrations allowed).
Our experiments show that generated samples might not
look as humans at all. We demonstrate it in Fig. 8 with
corresponding t-SNE visualizations for each GAN model.



Figure 6. Examples of interpolating between random points in the latent space of GAN-βΘ mixed model. Pose and shape are entangled
with each other, which complexifies the usage of such a mixed model in applications.

F. Future work

In most situations, independently sampling pose and
shape parameters will result in realistic bodies. However,
this is not always the case. Consequently, the task of gener-
ating plausible bodies when mixing shape and pose together
needs to be further investigated. It might be resolved, for

example, by using the formulation of a conditional GAN,
where generating pose depends on some shape features or
vice versa. We explore these aspects in our further work.



Figure 7. Example of generating bodies via two independent models, GAN-Θ and GAN-β. Pose varies along axis x, Shape varies along
axis y. Having indepedent latent models allows to disentangle shape and pose for generating body. However, as pose and shape are in fact
dependent, it might lead to generating implausible bodies (see last column, bottom rows).

(a) t-SNE on GAN-Θ (pose only, main
paper).

(b) t-SNE on GAN-β (shape only). (c) t-SNE on GAN-βΘ (pose and
shape). The cluster of outliers (black
rectangle) corresponds to implausible

bodies.

(d) Unrealistic samples of GAN-βΘ (from the black
rectangle in (c) ).

Figure 8. t-SNE of samples from the entangled GAN-βΘ (c) identifies a cluster of generated points that are not consistent with real
samples. This cluster consists of outliers, shown in (d), that correspond to unrealistic bodies. t-SNE plots for independent models, GAN-Θ
(a) and GAN-β (b), demonstrate consistent data coverage.
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