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This supplementary material includes connections be-
tween our proposed method with voxel-based approaches
designed for traditional 3D vision in Sec. 1. Also, the de-
tailed working principle of event cameras are provided in
Sec. 2. In Sec. 3, we discuss the effects of different voxel
sizes on the performance of our proposed model. In addi-
tion, we present comparisons of different vertex selection
strategies in Sec. 4. Next, we include the experiment in
Sec. 5 to evaluate the robustness of our model to the in-
put vertex density. Finally, we conduct the experiment on
the action recognition task in Sec. 6 to further validate the
effectiveness of our method w.r.t motion cues encoding.

1. Supplementary Related Work

Voxel-based approaches for 3D vision also hold connec-
tions with our method. Here, we briefly introduce sev-
eral representative studies among previous voxel-based ap-
proaches for 3D vision and distinguish major differences
between ours and their models. Inspired by the success of
deep models on 2D CNNSs, this branch of methods first for-
malizes point clouds into 3D voxels and applies 3D convo-
lutions to encode features [4, 7,9, 15]. Recently, PointPil-
lars [8] and HVNet [14] alleviate the inefficient computa-
tional issue of volumetric convolution by representing point
clouds as pseudo images which are compatible with 2D
CNNs. These approaches incrementally refine the voxel-
based methods in the field of 3D vision. However, the
topic of adopting voxel-wise representation for event data
remains unstudied. To exploit event data’s sparsity and non-
redundancy, we only select representative voxels for fur-
ther processing instead of taking the whole voxels as input
(dense grid-like representations). This sparse representa-
tion enables us to maintain the informative cues provided by
voxel-wise input and realize low model and computational
complexity (EV-VGCNN). Furthermore, the novel vertex
selection strategy and the feature calculation approach are
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customized according to the natural properties of event data.
Lastly, the newly introduced graph learning modules are
able to encode spatial-temporal cues with flexible receptive
fields.
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Figure 1. Left: A sketch of the working principle of event cam-
eras. Events are produced asynchronously according to the light-
ness (In L) changes. Red and blue arrows represent positive and
negative events, respectively. Right: The RGB image captured
from the traditional RGB camera (top) and event signals in the
original format produced from an event camera (bottom).

2. Event signals

As visualized in Fig. 1, event cameras produce events
asynchronously when they detect changes in the log bright-
ness (Aln L(z,y,t)) that exceed the contrast threshold C
[5] as Eq. (1) described.

[AlnL|=|nL(z,y,t) —InL (z,y,t — At)| > C, (1)

where At is the time between the new event and the last
event generated at the same location. Each event e; =
(24, yi, ti, p;) is triggered at the pixel location of (x;,y;)
at time ¢; with polarity p; (p € {—1,1}). The polarity of
an event shows the sign of brightness changes. Precisely,
positive events (p = +1) represent the lightness increasing
(Aln L > C) and negative events (p = —1) represent the
lightness decreasing (AIn L < —C).



3. Effects of Various Voxel Sizes

Voxel size N-Cal N-C CIF10
3x3 0.712 0.942 0.623
5x5 0.748 0.953 0.651
7x7 0.751 0.937 0.670
9x9 0.736 0.933 0.648

Table 1. Comparisons of different voxel size choices.

The physical definition of voxel size (v, vy, vg) in this
paper can be categorized into two folds. The first two di-
mensions (v,,v,,) correlates to the spatial resolution and
the last dimension (v,) correlates to the temporal resolu-
tion. In the following, we will detail the impact of differ-
ent voxel size choices on the performance of our model.
Initially, we conduct a comparison experiment on different
choices of the first two dimensions of voxel size and list
results in Table 1. Taking the dataset N-Cal as an exam-
ple, when the voxel size increase from 3 x 3 to 5 x 5, the
model performance increase dramatically. This is due to
the larger voxel size can encode local appearance (texture
or contours) better. Intuitively, if the voxel size is too small,
then the feature of each vertex will be similar to a point and
thus cannot achieve the target of encoding local coherent 2D
semantics. Nevertheless, when the voxel size continuously
increases to 9 x 9, the performance does not gain a large
improvement and even drops significantly when the voxel
size equals 9 x 9. We attribute this to the limitation brought
from model capacity. Since the parameters in our model
are shared for each input vertex, if the features contained in
each vertex are too complex (depending on the size of the
voxel and the complexity of objects in samples), then such
a lightweight network will have difficulty in extracting the
distinguishing characteristics. From the table, we can find
that though the exact value of voxel sizes on accuracy im-
provement is different due to the variance across different
datasets in recording approaches and object complexity, the
statistical trend is invariant.

As for the last dimension of voxel size, we set its value
manually depending on the discrepancy between various
datasets in duration length and the complexity of motion
conditions. For example, we set v, as 3 for short-duration
datasets (< 300ms) such as N-Cal, N-C, and ASL. And set
v, as 1 for datasets with long duration (> 1000ms) such as
CIF10. Notice that even the duration length of N-M is less
than 300ms, we still set v, as 1 to give its graph-based rep-
resentation more capable of temporal cues embedding since
we observe that each sample in N-M possesses high-speed
motions and trajectories with large distance shift.
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Figure 2. Visualization comparisons of different vertex selection
strategies. (a), (b) and (c) represent visualizations of obtained ver-
tex distributions by random selection, furthest selection, and pro-
posed selection strategies. Different colors represent varying event
point densities among voxels.

4. Comparisons on Various Vertex Selection
Strategies

Selection method N-Cal N-C CIF10
Random 0.736 0.935 0.652
Furthest 0.734 0.941 0.660
Ours 0.748 0.953 0.670

Table 2. Comparisons of different selection strategies.

This section presents comparisons of different vertex se-
lection strategies. Besides our adopted vertex selection ap-
proach, we introduce other two strategies that are com-
monly used in the 3D point cloud field [10, 1 1], i.e., random
vertex selection and furthest vertex selection. The com-
parison results in Table 2 show that our adopted selection
method achieves leading performance on three representa-
tive datasets. We attribute this improvement to the function
of our selection approach in filtering noise vertex. To sup-
port our statement intuitively, we present visualizations of
selected vertices (voxels) obtained by three different strate-
gies. From Fig. 2, we can find that our adopted selec-
tion method is able to filter out the irrelevant vertices, and
thereby can encode spatio-temporal semantics of event data
effectively. On the contrary, the other two selection meth-
ods, though they can present the structure of objects to a
certain extent, many noise vertices have also been kept. We
believe that these remaining noise vertices will inevitably
interfere with judgments of the model, resulting in the low
performance of the model.

5. Robustness to Input Vertex Density

Practical applications in real life call for our graph-based
classification network to be flexible to different input sizes.



It means that one can input our EV-VGCNN with an arbi-
trary number of vertices. This characteristic is significantly
helpful to event-based models since real-world scenarios
are naturally with different spatial scales or motion trajec-
tories, which entail graphs with distinct numbers of vertices
to embed their semantic features correspondingly. There-
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Figure 3. Results of the proposed model tested with different num-
ber of input vertices in the graph.

fore, we validate the robustness of our model (trained on
graphs with 2048 vertices) to the input vertex density on the
N-Cal dataset. Fig. 3 shows that although the classification
accuracy drops dramatically when the number of vertices is
fewer than 1536, our approach is capable of keeping a sta-
ble performance (performance drops within 1%) in a large
range ([1536, 2816]) of input vertices, suggesting its robust-
ness to the input vertex density and potential on real-world
applications.

6. Action Recgnition

Motion encoding is helpful for event-based object classi-
fication since different objects and scenes hold various mo-
tion trajectories. Different from event-based object classifi-
cation, event streams generated by human action normally
convey more temporal (motion) patterns, meaning that eval-
uation on action recognition tasks can better illustrate ours’
advantage in motion embedding. Thus, we follow the train-
ing strategy in [2] to conduct experiments on DVS128 Ges-
ture dataset [1], which is recorded in the real world envi-
ronment and contains eleven different classes of gestures.
We set the voxel size as (vp, Uy, va) = (5,5, 1) and vertex
number N, as 512. Each sample used for training and test-
ing is with the duration of 0.25 seconds. The results in Table
3 show that our approach can achieve comparable perfor-
mance w.r.t SOTA method RGCNN+Res.3D with 13 times
fewer parameters and 19 times fewer complexity, indicating
the high efficiency of our model in motion cues encoding.

Method Acc. (0.25s) GFLOPs #Params
EST [6] 0.941 428 21.38M
MVEF-Net [3] 0.950 5.62 33.62M
EventNet [12] 0.885 0.91 281 M
PointNet++ [13] 0.940 4.03 1.74 M
RG-CNN (Res.3D) [2]  0.961 13.72 1243 M
Ours (SFRL) 0.943 0.45 0.76 M
Ours (MFRL) 0.956 0.46 0.84 M

Table 3. Comparisons of models in terms of accuracy and com-
plexity on action recognition dateset.
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