
Supplementary Materials for “VISTA: Boosting 3D Object Detection via Dual
Cross-VIew SpaTial Attention”

A. Implementation Details

Attention Module Directly sequentializing the original fea-
ture maps into feature sequences will construct the interme-
diate attention maps with huge memory occupancy, which
leads to unaffordable GPU memory costs. Considering ef-
ficiency and simplicity, the original feature maps are down-
sampled by average pooling before being passed into at-
tention module, then the outputs of attention module are
mapped back to original sizes via inverse mapping accord-
ing to the pooling field. In practice, the kernel size of the
average pooling is set to [4,4] and [4,1] for BEV and RV,
respectively.

Voxelization We voxelize the point clouds according to the
x,y,z axes. All ablation studies are conducted in low vox-
elization resolution of [0.1,0.1,0.1]m according to the x,y,z
axes. To benchmark the results of our proposed VISTA-
OHS on the nuScenes dataset, we follow the OHS [1] to
tune up the voxelization resolution to [0.08, 0.08, 0.08]m.
In terms of the Waymo Open Dataset, following the official
configurations provided by CenterPoint, we keep the low
resolution unchanged.

Training We follow the CBGS [5] to train the proposed
VISTA using Adam [3] optimizer scheduled by one-cycle
learning rate policy [2]. For Adam optimizer, the weight
decay is set to 1e-2. And for the one-cycle learning rate
policy, we set the max learning rate as 1e-3 for nuScenes
and 3e-3 for Waymo Open Dataset, and the momentum is
ranging from 0.95 to 0.85. We train the proposed VISTA on
4 RTX3090 GPUs for 20 epochs with batch size 16 on the
nuScenes dataset, and for 36 epochs with batch size 16 on
the Waymo Open Dataset. During training, the proposed at-
tention variance constrain is applied on both the regression
and classification branches of the decoupling architecture.

Code Our implementations are based on the open-sourced
code released by CBGS [5] 1 and CenterPoint [4] 2. Code
and experimental configurations will be released upon the
acceptance of the paper.
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Figure 1. The attention weights learned by the classification and
regression branches of the decoupled attention modeling. We
choose two samples to present, each of which is demonstrated in
one row. The left column illustrates the attention maps for clas-
sification tasks, the right column shows the regression one. The
query boxes are painted in red, the brighter the points, the larger
the attention weights.

B. Extra Analysis of Decoupling Design

In this section, we present the attention weights in terms
of regression and classification tasks in the Figure 1, which
are learned in the decoupled attention modeling. Given
the area containing a query bounding box from target view
(BEV) to query the source view (RV), we get the corre-
sponding cross-view attention weights for each pillar in the
above area, and map the weight back to the origin point set
for visualization. We observe that, different supervised sig-
nals lead to different attention weights. For classification
task, the attention module tends to focus on the other ob-
jects in the whole scenes to enrich the semantic information
contained in the fused features, as shown in the (a) and (c).
To understand the geometric properties (e.g. scale, transla-
tion) of the query objects, the attention modeling for regres-
sion task instead, paying its attention to the local regions in
which the query objects are, as we demonstrated in the (b)

1https://github.com/poodarchu/Det3D
2https://github.com/tianweiy/CenterPoint
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Avg Linear Atten Conv Atten Var Cons Decouple mAP car truck cons. bus trailer barrier motorcycle bicycle pedestrian traffic cone

59.5 84.2 56.5 19.7 65.6 36.0 67.2 63.7 47.1 83.5 68.4
X 59.2 84.0 53.8 19.7 65.5 36.6 64.5 67.4 48.2 83.1 67.1

X 58.7 84.6 52.4 18.4 65.5 36.0 64.6 66.6 44.0 83.7 68.4
X 60.0 84.4 54.1 20.4 67.2 36.7 64.4 66.6 50.6 83.5 69.6
X X 60.4 84.7 55.8 19.8 67.1 36.2 68.6 67.3 50.6 83.9 69.1
X X X 60.8 84.8 57.2 20.5 67.6 36.8 69.0 67.7 50.7 84.1 69.7

Table 1. The detailed ablation studies on the validation set of the nuScenes dataset. “cons.” refers to construction vehicle

Method mAP car truck cons. bus trailer barrier motorcycle bicycle pedestrian traffic cone

Decouple+Cls Var 60.6 84.8 57.0 20.4 66.9 36.2 68.3 65.7 49.1 83.5 69.5
Decouple+Reg Var 60.5 84.7 55.4 19.3 66.4 36.0 68.6 67.1 50.2 84.0 69.3
Decouple+Both Var 60.8 84.8 57.2 20.5 67.6 36.8 69.0 67.7 50.7 84.1 69.7

Table 2. Ablation studies of the attention variance constrain being applied on different tasks. “Cls” and “Reg” stand for the classification
and regression, respectively. “cons.” refers to construction vehicle. The ablation studies are conducted on the validation set of the nuScenes
dataset.

and (d). The different preferences of the individual atten-
tion modeling on the regions of interest further demonstrate
the efficacy of our decoupling design.

During training, we apply the proposed attention vari-
ance constrain on both the classification and regression at-
tention weights of the decoupled attention modeling. To fur-
ther verify the different impacts that the classification and
regression task will have on the network, we apply the atten-
tion variance constrain on different attention weights. The
performances are demonstrated in the Table 2. We observe
that, when apply the attention variance constrain on the at-
tention weights of the classification task, the network yields
better performances on the large objects (e.g. truck, con-
struction vehicle). We argue that such performance gains
are mainly due to the enriched semantic features. Since the
most parts of the large objects in point cloud representation
are empty, aggregating the corresponding dense cross-view
features from the other objects is beneficial for the network
to infer the categories of the objects. When it comes to
the small objects (e.g. barrier, motorcycle, pedestrian), the
small sizes of the objects make the network easier to con-
sider the local context to understand the geometric proper-
ties, therefore, the regression task is better at handling the
small objects when being applied the attention constrain.
After adopting the proposed attention variance constrain in
both classification and regression, the network benefits from
the advantages on the large also the small objects, and yields
the best performances, as shown in the last row of Table 2.

Nevertheless, the decoupling design definitely brings ex-
tra parameters. To further clarify that the performance gains
come from the proposed decoupling structure, we conduct
an experiment that uses a single attention and adds several
convolutional layers to the detection head (Deeper Head);
the setting keeps the number of parameters roughly the
same. Validation results in Table 3 show that the alternative

setting of replacing the decoupling does not bring benefits,
which further verifies the efficacy of our proposed decou-
pling design.

Deeper Head Decoupling
mAP Gains 60.40→60.45 (+0.05) 60.40→60.81 (+0.41)

Table 3. The mAP gains on nuScenes Validation Set

C. Extra Analysis of Variance Constraint

We apply the variance constraint on the positive samples
during the training phase, which may form an “upweight” of
the positive samples. Hence, the stated performance gains
benefit from the proposed variance constraint could be at-
tributed to such an “upweight” training. To clarify, we dis-
able the variance loss and run a set of experiments that ei-
ther scale up or scale down the background predictions, as
shown in Table 4. Table 4 shows that our variance loss is not
equivalent to scaling of labels, thus verifying its efficacy.

Scaling down (x0.5) Scaling up (x2) Ours
mAP 59.6 60.4 60.8

Table 4. The mAP on nuScenes Validation Set

D. Detailed Ablations

In this section we extend the ablation studies to each cat-
egory in Table 1 to present the category-wise performances.
The ablation studies are conducted on the validation set of
nuScenes dataset.
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