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The supplementary material is organized as follows:

1. We give further experimental results to support our
claims regarding the effectiveness of the proposed
method in Sec. 1.

2. We provide further quantitative and qualitative re-
sults, respectively, to evaluate the effectiveness of Di-
verse3DFace in Secs. 1.1 and 1.7.

3. We analyze the shape fitting performance on occluded
images by FLAME [6] and our global+local models
using a histogram of MSE errors in Sec. 1.2.

4. We study how the diversity hyperparameters affect the
diversity and quality of the generated 3D reconstruc-
tions in Sec. 1.3

5. We present examples of diverse 3D reconstructions by
our method on real-world occlusions in Sec. 1.4.

6. We study how occlusions at different regions of
the face affect diverse 3D reconstruction differently
in Sec. 1.5.

7. We study a controlled way of generating diverse re-
constructions using interpolation in the latent space
in Sec. 1.6.

8. Finally, we describe the full implementation details of
our optimization routine in Sec. 2.1, and of the Mesh-
VAE in Sec. 2.2.

1. Further Experiments
1.1. Further Quantitative Analysis on Diversity

We provide further quantitative evaluation of our ap-
proach compared to the baselines in terms of diversity per-
formance as measured by the proposed ASD-O, ASD-V met-
rics, and the ratio ASD-O/ASD-V, on the CelebA dataset [7].
Since the CelebA dataset [7] is not labeled with groundtruth
3D shape, we do not compute the Closest Sample Distance
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Figure 1. Histogram of MSE for shape fitting on occluded face
images by FLAME [6] and our Global+local model.

(CES) on this dataset. To re-iterate, lower ASD-V indicates
better consistency with the visible regions; and higher ASD-
O indicates higher diversity in the occluded regions. As re-
ported in Tab. 1, our approach obtains the maximum ASD-
O across all occlusion types, the lowest ASD-V for Glasses,
as well as the second lowest (compared to Mesh-VAE) ASD-
V for Facemasks and Random occlusions. This is further
corroborated by the significantly higher ASD-O/ASD-V ra-
tios reported by Diverse3DFace compared to the baselines.
Compared to this, single-stage diversity fitting baselines viz.
FLAME+DPP and Global+Local+DPP generate the low-
est ASD-O/ASD-V ratios, signifying that the 3D reconstruc-
tions generated by these approaches are neither diverse on
the occluded regions, nor consistent with respect to the visi-
ble regions. On the other hand, one-pass samples generated
by Global+Local+VAE are consistent with the visible face
as reported by low ASD-V, but not diverse on the occluded
regions (low ASD-O).

1.2. Error Histogram Analysis

In Fig. 1, we plot the histograms of shape fitting er-
rors (in terms of MSE) when the FLAME [6] and our
global+local model are used to fit to partially occluded
face images. One can observe that, while FLAME regis-
ters smaller errors (less than 10 MSE) on more number of



Occlusion FLAME+DPP Global+Local+DPP Gloal+Local+VAE Diverse3DFace (Ours)
Type ASD-V (↓) ASD-O (↑) ASD−O

ASD−V (↑) ASD-V (↓) ASD-O (↑) ASD−O
ASD−V (↑) ASD-V (↓) ASD-O (↑) ASD−O

ASD−V (↑) ASD-V (↓) ASD-O (↑) ASD−O
ASD−V (↑)

Glasses 3.44 2.98 0.866 2.15 2.99 1.391 0.81 1.17 1.444 0.68 3.56 5.235
Face-mask 3.45 4.93 1.429 2.85 3.99 1.400 0.75 1.62 2.160 1.03 7.47 7.252
Random 4.12 4.23 1.027 3.17 3.84 1.211 0.79 1.29 1.633 0.83 4.30 5.181
Overall 3.86 4.44 1.150 3.03 3.88 1.281 0.78 1.41 1.808 0.90 5.41 6.011

Table 1. Quantitative evaluation of the diversity in 3D reconstruction of occluded faces from the CelebA dataset [7] between the baselines
vs. Diverse3DFace in terms of ASD-V and ASD-O metrics (in order of 10−3) and the ratio between them.

k
nσ 1 2 3 4 5

0.1 0.53 0.81 0.93 1.40 1.88
0.25 0.69 0.95 1.18 1.61 1.98
0.5 0.86 1.02 1.30 1.94 2.14
1 0.81 1.05 1.23 1.92 2.03
2 0.79 0.98 1.06 1.57 1.98

(a) ASD-V (↓)

k
nσ 1 2 3 4 5

0.1 3.63 4.92 5.62 7.17 8.64
0.25 4.13 6.37 7.65 8.18 10.73
0.5 5.98 8.25 9.16 11.19 14.53
1 5.18 7.89 8.84 10.72 12.96
2 4.42 6.68 7.40 9.78 12.21

(b) ASD-O (↑)

Table 2. Effect of the hyperparameters k and nσ on the diversity metrics ASD-V and ASD-O on the CoMA dataset [9].

samples than the global+local model, there are significantly
more number of samples (∼ 15%) where FLAME registers
very high MSE errors (> 50 MSE) than the global+local
model. One can conclude that our global+local model is
more robust than the global FLAME model [6] on samples

with challenging occlusions.

1.3. Diversity Hyperparameters

The diversity generated by our approach is determined
by the DPP loss Ldpp = −tr

(
I− (L+ I)−1

)
. Here,

Target Image Fitting by Global-
local model

3D Reconstructions by Diverse3DFace

Figure 2. Set of 3D reconstructions by Diverse3DFace on real-world occluded face images.



Target Image Diverse 3D Reconstructions by Diverse3DFace

Figure 3. Qualitative evaluation of the diversity and robustness performance of Diverse3DFace to occlusions at different facial locations.



Target Image Interpolated 3D Reconstructions

Figure 4. Controlled generated of diverse 3D reconstructions between two distinct modes. Diverse3DFace can be used to generate
controlled diversity on the occluded regions by performing interpolation between two distinct shapes in the latent space.

the DPP kernel entry for the i, j-th element is given by
Li,j = qiSi,jqj , where qi denotes the quality of element i,
and Si,j represents the similarity between i and j. The DPP
optimization tries to maximize the quality of each sample,
while minimizing the similarity between distinct samples.
As stated in the main paper, we control the similarity term
Si,j = exp

(
− k

medi,j(disti,j)
disti,j

)
and the quality term

qi = exp(−max(0, zTi zi − nσ

√
d)) using two parameters

k and nσ , respectively. In Tab. 2, we study the effects of the
two hyper-parameters k and nσ on diversity as measured
by the diversity metrics ASD-V and ASD-O. As shown in
Tab. 2, we obtain maximum ASD-V, as well as, ASD-O at
k = 0.5; whereas both metrics increase as nσ increases.
Thus, we set k = 0.5 in our experiments while we choose
nσ = 3 as a sweet spot between minimizing ASD-V and
maximizing ASD-O. The user can change the value of nσ to
tweak the diversity-realism trade-off.

1.4. Real-world Occlusions

We present examples of diverse 3D reconstructions by
our approach on real-world occluded face images in Fig. 2.
For these images, we inferred the occlusion mask using the
face segmentation model by Nirkin et al. [8]. These results
further demonstrate the efficacy of Diverse3DFace to gen-
erate diverse, yet plausible 3D reconstructions on real world
occlusions ranging from glasses, scarf, facemasks, etc.

1.5. Moving the Occlusion Around the Face

In this section, we evaluate the diversity and robustness
performance of Diverse3DFace to occlusions at different lo-
cations on the face. Fig. 3 shows the set of 3D reconstruc-
tion by Diverse3DFace when the occlusion moves around
the face occupying the left cheek, mouth, the right cheek,
center and the periocular (eye) regions of the face. Our
method generates diverse, yet plausible set of 3D recon-
structions for all the cases. We particularly note the high de-
gree of diversity in expression that occurs when the mouth
region is occluded, as is expected.

1.6. Diversity Interpolations

A potential application of Diverse3DFace is to perform
controlled diversification around an occluded region during
3D reconstruction. To do this, we can first generate a set of
diverse 3D reconstructions for an occluded target image and
then allow the user to select two distinct samples to perform
interpolation in-between. We perform interpolation in the
latent space: z(α) = αz1+(1−α)z2. This affords the user
control over the extent and type of diversity. We present
examples of such interpolations in Fig. 4.

1.7. Further Qualitative Results on CelebA Dataset

We show further qualitative results of diverse 3D re-
constructions on occluded face images from the CelebA
dataset [7] by Diverse3DFace, compared to the singular re-
construction by FLAME [6], DECA [4], CFR-GAN [5],



Target Image FLAME [6] DECA [4] CFR-
GAN [5]

Occ3DMM
[3]

Extreme3D
[10]

Reconstructions by Diverse3DFace (Ours)

Figure 5. More Qualitative evaluation on the CelebA dataset [7]: Reconstructed singular 3D meshes from the target image by the
baselines vs. the diverse reconstructions from Diverse3DFace.

Occ3DMM [3] and Extreme3D [10] in Fig. 5. While the
baselines often get the pose, shape or expression wrong, Di-
verse3DFace generates 3D reconstructions that are consis-
tent with the visible regions, yet plausibly diverse on the
occluded regions.

2. Implementation Details

2.1. Optimization

We use the PyTorch library to implement our approach.
In our experiments, we found that the SGD optimizer, with
a learning rate of 5×10−3 gives the best results as compared
to the Adam and RMSprop optimizers. For photometric fit-
ting, we used the texture model provided by FLAME. We
run the fitting stage (Algorithm 1) for niter = 2000 itera-

tions and the diversity stage (Algorithm 2) for ncomp = 300
iterations. In Algorithm 1, we set the loss weights as fol-
lows: λf

1 = 5, λf
2 = 16, λf

3 = 10−3. During the di-
versifying shape completion stage (Algorithm 2), we set
λ1 = 1000, λ2 = 500, λ3 = 0.025. Further, we found that
using a slightly smaller learning rate for the eyeball com-
ponents while fitting the global+local model gives better re-
sults. For these components, we set the learning rate to be
0.5 times that of the other components.

2.2. Mesh-VAE

The Mesh-VAE model is based on the fully convolu-
tional mesh autoencoder (Meshconv) architecture proposed
by Zhou et al. [11]. Meshconv [11] uses spatially varying
convolutional kernels for different mesh vertices to account



Input Layer Output size Output
5023× 3 Mesh → vcDownConv(inc = 3, outc = 32, s = 2, r = 43,M = 17) + vcDownRes(2) 1367× 32

vcDownConv(inc = 32, outc = 64, s = 1, r = 27,M = 17) + vcDownRes(1) 1367× 64
vcDownConv(inc = 64, outc = 128, s = 2, r = 54,M = 17) + vcDownRes(2) 270× 128
vcDownConv(inc = 128, outc = 256, s = 1, r = 25,M = 17) + vcDownRes(1) 270× 256
vcDownConv(inc = 256, outc = 512, s = 2, r = 81,M = 17) + vcDownRes(2) 45× 512
vcDownConv(inc = 512, outc = 1024, s = 1, r = 27,M = 17) + vcDownRes(1) 45× 1024 feats

feats vcDownConv(inc = 1024, outc = 64, s = 2, r = 37,M = 17) + vcDownRes(2) 10× 64 µ
feats vcDownConv(inc = 1024, outc = 64, s = 2, r = 37,M = 17) + vcDownRes(2) 10× 64 logσ2

Model Complexity 9M

Table 3. Network architecture of the Mesh-VAE Encoder Emesh.

Input Layer Output size Output
10× 64 z vcUpConv(inc = 64, outc = 1024, s = 2, r = 8,M = 17) + vcUpRes(2) 45× 1024

vcUpConv(inc = 1024, outc = 512, s = 1, r = 27,M = 17) + vcUpRes(1) 45× 512
vcUpConv(inc = 512, outc = 256, s = 2, r = 16,M = 17) + vcUpRes(2) 270× 256
vcUpConv(inc = 256, outc = 128, s = 1, r = 25,M = 17) + vcUpRes(1) 270× 128
vcUpConv(inc = 128, outc = 64, s = 2, r = 12,M = 17) + vcUpRes(2) 1367× 64
vcUpConv(inc = 64, outc = 32, s = 1, r = 27,M = 17) + vcUpRes(1) 1367× 32
vcUpConv(inc = 32, outc = 3, s = 2, r = 24,M = 17) + vcUpRes(2) 5023× 3 Output

Model Complexity 8M

Table 4. Network architecture of the Mesh-VAE Decoder Dmesh.

for the irregular structure of a 3D mesh. The spatially vary-
ing kernels are sampled from the span of a shared weight
basis, using learned per-vertex coefficients. In addition,
Meshconv defines pooling and unpooling operations on a
3D mesh by performing feature aggregation Monte Carlo
sampling [11].

We trained the Mesh-VAE with FLAME [6] registered
groundtruth scans provided in the CoMA [9] and D3DFACS
[2] datasets. We perturbed the input meshes with uniformly
sampled rectangular masks (in XY) within a range around
the mesh center, while gradually increasing the size of the
mask per training epoch until it covered ∼40% of the ver-
tices. We detail the network architecture for the Mesh-VAE
in Tabs. 3 and 4.

The abbreviated operators used are defined as follows:

• vcDownConv(inc, outc, s, r,M ) + vcDownRes(s):
Downward residual block (as defined in Meshconv
[11]), with inc input channels, outc output channels, s
stride, r kernel radius and M number of shared weight
bases. The output is activated with ELU [1] activation.

• vcUpConv(inc, outc, s, r,M ) + vcUpRes(s): Upward
residual block (as defined in Meshconv [11]), with inc

input channels, outc output channels, s stride, r kernel
radius and M number of shared weight bases. The
output is activated with ELU [1] activation.

References
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