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1. Details of Different Loss Terms
1.1. Basic Loss Terms

‘We follow FS-Net [2] for the basic loss terms of transla-
tion, rotation and size.

For rotation, we decompose the rotation matrix Rg; as
plane normals of the bounding box Ry, = [rd’, rg", rét].
We predict the first two normals, denoted as r,,r,. The

loss is defined as,
Lot = |Irg" —rall, + 5" — 7ol M

Note that we normalize the predicted plane normals before
calculating the loss.

As for the translation ¢, GPV-Pose predicts the residual
translation ¢, which is the difference between translation ¢
and the mean M), of input point cloud.

t=t.+ M, @)
Then we have the translation loss as,
Eﬁ?ﬁfﬁ = ||tgt - tHl )

where ¢4 is the ground truth translation.

For size, we predict the residual size s,, which indicates
the difference between the real size s and the pre-computed
mean size C,,,. C,, is the mean object size of all instances
within a certain category in the training dataset. The pre-
dicted size is,

5 =5, +Cp 4)
The size loss is defined as,
£5§2ic = lsgt — 5”1 ®)

where s is the ground truth size. Finally, we have,
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where Eﬁﬂff‘: denotes the loss term for symmetry re-
construction, which will be introduced in Sec. 4, and
Lhasie = L£Pesic 4 L% denotes the loss for confi-
dence, whose definition is illustrated in Eq. 1 and Eq. 6
in the main text. {)\'I’Ot7 )\transv )\sizea )\sizev /\conf} =
{1.0,1.0,1.0,1.0, 1.0} are weighting parameters. Note that
we use L1 loss to replace the Lo loss and cosine distance

loss used in FS-Net [2] for faster convergence.

1.2. Bounding Box Based Loss Terms

We construct consistency terms between the predicted
pose and voted bounding box to boost performance. Fol-
lowing descriptions in the main text, firstly we recover the
plane parameters V;, D; for each of the six faces of the
bounding box ¢ € B, B = {y+,y—, z+,z—, z+,2—}, by
the weighted least square method. The bounding box based
loss term E?RB}&) includes the rotation term ng, transla-

tion term L'g)B and size term Ei 1)3. The loss is calculated
for each of the six voted faces of the bounding box respec-
tively and summed up as the final loss term. For rotation,
the consistency term is,

L :ZBH?”Q*NHM 7
S

where 1} is the calibrated predicted rotation vectors for
bounding box face i € B (see Sec. 3),

For translation and size consistency, we first locate the ob-
ject center, which in fact is the predicted translation ¢. Then
we calculate the distance between the object center and each
bounding box plane, denoted as u;, i € B,

i = ||tTNi_DiH1 (®)

Finally, since the distance from the object center to two ar-
bitrary opposite faces (e.g. face y+, y—) should be the same
and equal to half of the size along the corresponding axis,
we define the translation and size consistency terms as fol-



lows,
LEP = > i — iy ©)
i€{z,y,z}
LEY = i = si/2ll, (10)
i€B

2. Details of Bounding Box Voting

In order to recover the object bounding box via point-
wise voting, we aggregate the normal direction, distance
and confidence ny, dp, ¢, of each point p = [ps, py, p2]"
in the point cloud P,. We first locate the corresponding
point of p on the bounding box p' = [p.,, p;, p.]T, using
p’ = p+d,n,, and retrieve the predicted point cloud on the
bounding box face P,. Then we calculate the plane param-
eter by means of the weighted least square algorithm. The
plane parameter is described as A = [ay, ay, aq], and the
plane equation is ap/, + ayp; + aq = p),. Then we de-
fine the weighting matrix W = diag([c,|p € P,]), where
diag(x) denotes the diagonal matrix with * as diagonal ele-
ments. And, we define the coefficient matrix C as,

Py 1
C=|pipy1 (11)
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where for each point in P, its first and second coordinates
are stacked to construct C'. n is the number of points in P,
Similarly, we define the fitting goal as b, consisting of the
z-coordinate of each point in P.

Pt
b= |pt (12)

/m
b

Finally, we construct the optimization goal as f(A4) =
|[W(CA — b)||3. Utilizing the least squared algorithm, the
plane parameter can be recovered in a closed form as,

A= (CTWTwe) teTwTwb (13)

3. Details of Confidence-aware Rotation Re-
covery

In the main text, in Fig. 4(b), we briefly introduce how

to calibrate the predicted plane normals r,, ;. to be the per-

/

pendicular normals 7, 17, given their confidence ¢, ¢,. we

minimize the following cost function for calibration,

05,05 = arg min c,03 + c.03

14
s.t. 01+92+7T/2:0, ( )

where 6 denotes the angle between 7, and r,,, From Eq. 14
we then obtain

~—

05 = e (0 - (4
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To obtain the final plane normals r;, and r;, with 67 and
05, we first calculate the rotation axis as 1, = ry X ry =
[kz, ky, k.]. By applying the Rodrigue’s rotation formula,
we have following equations,

Ry = cos07I + (1 — COS@T)T‘/ZTT‘/Z

0 -k, ky (16)
+sinf; k., 0 —k,
—ky kg 0

Rag = cosOiI + (1 — cosO3)rl, v

0 —k, ky (17)
+sinb; k. 0 —kg
—ky kg 0
7y, = Rayry (18)
T; = RAIL‘TIL' (19)

The rotation matrix is finally recovered as
R=1[r, r, 1] (20)

4. Symmetry Prior and Symmetric Recon-
struction

We exploit two types of symmetry: Reflection Symme-
try and Rotational Symmetry [4]. More specifically, we
subdivide the symmetry into 4 sub-classes for convenience
: rotational symmetry around y axis (5y), reflection symme-
try w.r.t. the xy-plane (S,), reflection symmetry w.r.t. the
xz-plane (S;.) and reflection symmetry w.r.t. the yz-plane
(Sy2)). The detailed symmetry prior for each category in
NOCS [8] and LineMod [3] dataset is listed in Tab. 1 and
Tab. 2 respectively.

Since the handle of a mug is oftentimes occluded, we
separate mug into two sub-categories, with and without han-
dle. Also, in order to apply symmetry prior for mug cate-
gory, we follow SPD [7] and move the origin of object co-
ordinate along x axis to the middle of the cylinder part.



category | Sy Suy Sz Sy. | Type
bottle 1 1 0 1 T2
bowl 1 1 0 1 T2
camera 0 0 0 0 T1
can 1 1 1 1 T2
laptop 0 1 0 0 T3
mug w.h. 0 1 0 0 T3
mug wo.h. | 1 0 0 0 T2

Table 1. Symmetry prior for each category in NOCS dataset [5].
w.h. and wo.h. denote with handle and without handle respec-
tively.

category Sy Szy  Siz Sy | Type
ape 0 0 0 0 T1
benchvise 0 1 0 1 T3
bowl 1 1 0 1 T2
camera 0 0 0 0 T1
can 0 1 0 0 T3
cat 0 0 0 0 T1
cup 0 1 0 0 T3
driller 0 1 0 0 T3
duck 0 1 0 1 T3
eggbox 0 1 0 0 T3
glue 0 1 0 0 T3
holepuncher | 0 1 0 0 T3
iron 0 1 0 0 T3
lamp 0 1 0 0 T3
phone 0 0 0 0 T1

Table 2. Symmetry prior for each category in LineMod dataset [3].

We first define the basic loss term for directly supervis-
ing the symmetry reconstruction depending on the recon-
struction type. For type T1, e.g. camera, we directly recon-
struct the input point cloud. For type T2, e.g. bottle, we re-
construct the input point cloud w.r.t. the symmetry axis. For
type T3, e.g. laptop, we reconstruct the point cloud w.r.t. the
corresponding reflection plane. Thus for a point p, its cor-
responding point Gy, (p) under the canonical view w.r.t.
different symmetry types is defined as follows,

[pmapy>pz]T T1
[=pas Py, —p=]" T2 (©2))
[pzapy7 _pz]T T3

Thereby, for any point in the observed point cloud, its cor-
responding symmetry point under the camera view is,

Goym(p) =

G(p) = RytGoym(RYp — tgr) + Lyt (22)

Therefore, we define the symmetry reconstruction loss
as,

L =" Ik = G, (23)

pEP,

where p/, denotes the predicted symmetry point of p.
We also adopt a consistency loss between the recon-
structed points and the predicted pose to boost performance.
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Figure 1. Illustration of the computation of the consistency loss in
symmetry reconstruction.

We first use the predicted pose to transform the input points
to the corresponding symmetry points and then compare
the difference between the transformed points and predicted
symmetry points. The procedure is described in Fig. 1.
Then the function (%) in Eq. 4 in the main text is defined
according to the symmetry type as follows. For type T1, the
category has no symmetric characteristics, so we directly
use,

er1(p) =p (24)

For type T2, as shown in Fig. 1 (1), we need to calculate
the symmetric point p, of point p w.r.t. the y-axis. We first
compute its projection py,.,; on the y-axis,

Pproj = (p— )1y = (p—t) 1)y, (25)

where r; denotes the predicted y-axis rotation vector and
(*, x) denotes the inner product. Then we calculate vy that
is perpendicular to the y axis as,

VT2 = Pproj — (P — t) (26)
The symmetric point can then be computed by,
Dx =P+ 2ups 27
Thereby, we can define e (p) as,
er2(p) = p + 2vr2 (28)

For type T3, as shown in Fig. 1 (2), we calculate p, that
is symmetric to p w.r.t. the xy-plane. For other reflection
planes, the calculation is similar. We compute vrs as,

vrs = (t —p,r2) 1} (29)

where 7/, is the predicted z-axis rotation vector. Then
ers(p) is defined as,

er3(p) = p + 2vrs (30)

To summarize, £(*) in Eq. 4 is defined as,

ET1 (p) T1
er2(p) T2 (31)
€T3 (p) T3

e(p) =



Finally, we define the symmetry-based consistency loss
as follows,

55/%;?5 = Z Ips — @)1 (32)

PEP,

where p’, is the predicted symmetry point of p. The fi-
nal symmetry reconstruction loss is Efyﬁflw = Kfy‘i,iﬁ +
A LI5S where A, = 1.0 is the weighting parameter.

5. Limitations

Modality of Input Data. Our framework GPV-Pose
only utilizes the point cloud sampled from the input depth
image for pose estimation to boost the inference speed and
getrid of the influences of intra-class color variations. How-
ever, this strategy has 2 shortcomings compared to RGB-
D based methods. First, the translation is sometimes hard
to accurately predict for a certain category, e.g. laptop. In
GPV-Pose, the translation is recovered by adding the pre-
dicted residual translation and the mean of the input point
cloud. However, if the object center is outside the object
(e.g. laptop), the translation residual is hard to predict. Un-
der 3D75, our result is 39.7, while SGPA [1] is about 59.0.
Second, the input point cloud is obtained by randomly sam-
pling on the cropped depth map, which introduces random-
ness into our method and undermines robustness. In a nut-
shell, our point cloud based pose estimator enables efficient
inference, but adding RGB information may improve the
accuracy.

Influence of Outliers. Due to the limits of depth sensor,
the input depth around the boundary of the object is often
of low quality. Meanwhile, the segmentation based on RGB
image is also inaccurate on the object boundary. Thereby,
the sampled point cloud contains a non-trivial number of
outliers, which occupies more than one tenth of total points
in some cases. However, our method doesn’t use any point
cloud segmentation method to remove outlier points as FS-
Net [2], instead we only mitigate the influence of outliers
with the geometric constraints in Eq. 9 for the sake of com-
putation efficiency. Our geometric constraints perform ro-
bustly in most times, but outliers may still deteriorate our
performance to some extent.

Dependency on 2D detection results. For fair compar-
ison with previous methods [1, 5, 7], we employ an off-
the-shelf object detector Mask-RCNN and train it solely
on REAL275 dataset. This training strategy leads to some
poor 2D detection results for ambiguous objects, i.e. cam-
era, thin bottles. Since our method takes the point clouds
back-projected from the cropped depth maps as input, poor
detection results further limit our pose accuracy, especially
under the IoU metric. This could be mitigated to some ex-
tent by utilizing specially designed detectors (similar to FS-
Net [2]).

Potential Negative Societal Impact. Our method inher-
ently has no significant negative societal impact. We will
try our best to resolve the problems caused by our method.

6. Details of Network Design

Choice of backbone. We use a point cloud based ap-
proach as point clouds are generally better at describing 3D
scenes than 2D depth maps. For example, neighboring pix-
els in 2D can be far away in 3D, which is hard to capture
with CNNs as they are not strong at handling the result-
ing high frequencies. Hence, most recent SOTA methods
(e.g. FS-Net [2], DualPoseNet [5], SGPA [1]) all operate on
point clouds. 3DGC [6] is insensitive to shift and scale and
capable to extract pose-sensitive feature, which is proved by
FS-Net [2]. Thereby, we choose 3DGC as our backbone.

Direct pose regression. Many previous methods typi-
cally predict the NOCS coordinate for each observed point
and rely on Umeyama algorithm + RANSAC methods for
pose recovery. This strategy leads to inefficient inference
process, thus we directly regress the pose for faster in-
ference speed. In addition, using direct regression en-
abled our confidence-aware rotation representation, which
demonstrates superior performance to competitors (cf. Tab.
2 row: A1-A2 in the main text).

7. Choice of Hyperparameters

Loss weights. As several basic loss terms are borrowed
from FS-Net, we simply adopt their weighting scheme. All
other weights are chosen empirically such that the initial
loss ranges are roughly the same to avoid any bias during
training. We find that our obtained results are fairly resilient
towards the choice of weights.

Other hyperparameters. First, {k1, %2} in Eq. 1 con-
trol the number of points we use for calculating each bound-
ing box face. Further, {k,, ks, kp} in Eq. 9-11 control the
outlier filtering step. We select {k,,, ks, k,, } to preserve at
least 90% points. Yet, similar to the loss weights, the perfor-
mance of GPV-Pose is not sensitive to the hyperparameters
as long as they are a sensible choice with respect to bound-
ing box face and outlier filtering.

8. Details of Data Augmentation

To avoid overfitting, we follow FS-Net [2] and employ 4
kinds of augmentation on the point cloud: random scaling,
random uniform noise, random rotational and transla-
tional perturbations, and bounding box based adjust-
ment. Each kind of augmentation introduces small pertur-
bations on the point cloud. We set the probabilities to con-
duct the first three kinds of augmentation to be 0.3, and 0.2
for the last one.

In random scaling, we re-scale the input point cloud
along the x, y, z axis with the ratios ez, e,,e, respec-



Method 3D59 3D75 | 5°2e¢m 5°bem 10°5em
NOCS [8] 839 695 323 40.9 64.6
SPD [7] 93.2  83.1 54.3 59.0 81.5
CR-Net [9] 93.8 83.0 72.0 76.4 87.7
SGPA [1] 93.2 88.1 70.7 74.5 88.4
DualPoseNet [5] | 924 86.4 64.7 70.7 84.7
Ours 929  86.6 674 76.2 87.4
Ours(M) 93.4 883 72.1 80.1 89.0

Table 3. Comparison with state-of-the-art methods on CAMERA2S5 dataset.

category | 3Da5 3Ds9 3D75 | 5°2e¢m 5°5em 10°5em 10°10cem
bottle 577 577 48.1 34.3 39.6 91.7 93.3
bowl 100 100 97.7 63.2 75.8 100 100
camera | 909 86.0 464 0.4 0.6 104 10.4
can 714 714 640 46.9 56.5 97.5 97.5
laptop 854 84.6 39.7 36.0 73.2 90.0 95.0
mug 99.6 983 90.8 11.0 11.7 50.4 51.1
average | 84.2 83.0 644 32.0 429 73.3 74.6

Table 4. Per-category results of our method on REAL275 dataset.

Category | 3Ds50 3D75 | 5°2em 5°5em 10°5em
bottle 93.7 87.8 75.5 95.2 97.2
bowl 96.8 96.5 95.7 96.9 99.6
camera 86.7 74.0 54.1 62.3 74.2
can 924 922 98.4 99.3 994
laptop 97.0 87.5 67.5 83.9 91.3
mug 93.8 91.9 42.2 42.7 72.0

average | 934 883 72.1 80.1 89.0

Table 5. Per-category results of Ours(M) on CAMERA25

dataset.

tively. The ratios are generated from the uniform distribu-
tion U(0.8,1.2). For each point p = [p;,py,p.]" in the
input point cloud, the point after random scaling is,

frs (P) = [pmexvpyeyypzez]T (33)
To add random uniform noise, we add random noise
sampled from the uniform distribution U (—50mm, 50mm)
onto the coordinates of each point.

In random rotational and translational perturba-
tions, we apply random rotation R, 4 and translation £,
onto the ground truth rotation and translation Ry, t4:. For
a point p, its corresponding point after augmentation is,

frttp(p) = Raug(Rgt (p - (34)

tgt)) + taug

The random rotation R4,y is computed by sampling three
Euler angles from the uniform distribution U(—15°,15°)
respectively and then convert them into the rotation matrix.

The random translation t,,4 is sampled from the uniform
distribution U (—50mm, 50mm,).

In bounding box based adjustment, we change the size
of the top (y+) and bottom (y-) faces of bounding box with
ratio €4op, €hottom respectively. eiop, €pottom are generated
with the uniform distribution U (0.8, 1.2). By adjusting the
object bounding box, the points are also adjusted accord-
ingly. Note that we only augment the bounding box for bowl
and mug. Then for a point p, its corresponding point after
augmentation is,

T’(p) = (py/sy + 05) * (etop - ebottom) + E€bottom (35)

Joe(p) = {px * 7(p), Py, = x 7(p)} (36)

where s, denotes the ground truth size along y axis.

Moreover, during training, we add random noise to the
ground truth mask before sampling the point cloud from the
depth map in order to enhance robustness. In this manner,
we ensure that a certain number of outliers are incorporated
in the training stage and thus enables outlier removal capa-
bility during inference.

9. Overall Performance on CAMERA?2S5.

In Tab. 3, we compare GPV-Pose with state-of-the-art
competitors on the synthetic CAMERA?25 [8] dataset for
category-level tasks. Since DO-Net [4] and FS-Net [2]
do not provide results on CAMERA25, we do not com-
pare with them. Note that we provide two variants of our
method. Ours(M) trains a separate model for each category,
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Figure 2. Per-category comparison of Ours(M) with DualPoseNet
on CAMERAZ25

while Ours trains a single model for all categories. We
train the network for 300 epochs for Qurs and 100 epochs
for Ours(M). Other hyperparameters keep the same as on
REAL275.

From Tab. 3, it can be deduced that GPV-Pose achieves
state-of-the-art performance w.r.t 4 out of total 5 metrics.
Specifically, for the 5°5cm metric, we surpass CR-Net [9]
with 80.1 compared to 76.4. This superior performance on
the synthetic dataset proves the robustness of our method
in various domains. In Fig. 2, we additionally present a
detailed per-category comparison of our method with Du-
alPoseNet [5]. As one can easily deduce, we outperform
DualPoseNet by a large margin, especially when focusing
on the rotation results for non-symmetrical objects such
as camera. Moreover, Tab. 5 lists the detailed results of
Ours(M) on each category on CAMERA25.

10. Supplementary Results on REAL275

In Tab. 4, we provide per-category results of GPV-Pose
on REAL275. In Fig. 3, we additionally provide 4 exam-
ples with several outliers, and visualize the predicted confi-
dence weights for the bounding box voting and the recov-
ered bounding box plane. Our bounding box voting algo-
rithm works robustly with outliers. In Fig. 4, 5, we demon-
strate more qualitative results of our method in compari-
son with DualPoseNet [5]. It can be seen clearly that our
method consistently outperforms DualPoseNet, especially
in the estimation of rotation.
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