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Appendix

We provide details omitted in the main text.

• Appendix A: Dataset details. Sensor time synchro-
nization (cf. subsection 3.1 of the main paper). Road
labeling pipeline and additional visualizations of gen-
erated depth mask ground-truth (cf. subsection 3.4 of
the main paper). Dataset class statistics.

• Appendix B: Additional details on baseline algorithms
(cf. section 4 of the main paper).

• Appendix C: Link to source code for training and in-
ference (cf. subsection 5.1 of the main paper).

• Appendix D: Training details and visualization results
(cf. subsection 5.1 and of subsection 5.2 the main pa-
per).

A. Dataset details
A.1. Visualizations of depth mask ground-truth

We show a labeling example in Figure 10 as explained in
section subsection 3.4. Additional ground truth road depth
masks are shown in Figure 11.

Figure 10. A built pointcloud is projected to BEV and the road is
annotated using polygon labeling tool (left). The polygon is then
divided into smaller 150 m2 polygons and ground planes are esti-
mated. Each color in the polygon represents a subdivision (mid-
dle). Finally ground planes are projected onto the image yield-
ing amodal road mask with depth. Purple means farther distance
(right)

A.2. Sensor time synchronization details.

We use NVIDIA’s recording tool to log the LiDAR at
10 Hz; cameras at 30 Hz. The Novatel GPS/INS data was
logged at 100 Hz using the PC running ROS, time synchro-
nized with the AGX through PTP from the Novatel custom

Figure 11. Generated ground truth depth masks for each pixel
lying in the road area. Lighter blue indicates farther depth.

firmware. The timing synchronization among cameras has
been verified to average 60 µs. We select the OS2 as the ref-
erence to which all other sensors are matched. The average
time difference between this LiDAR and the cameras is 8.9
ms, with a worst case of 16.6 ms when there are no cam-
era frames dropped. For the IMU/GPS, the average time
difference is 3 ms; the worst case is 30 ms. The INS/GPS
poses can be interpolated to the selected LiDAR time. For
the VLPs, the worst case time difference is 35 ms.

A.3. Dataset Statistics

(a) (b) (c)

Figure 12. Statistics for a) overall object counts; b) cars per image;
c) object distributions over weathers.

We include statistics on the amodal object labels in Fig-
ure 12. Regarding the amodal road segmentation task the
average number of close pixels per image are 767,759 while
far are 38,552, which corresponds to 33.0% and 1.7% of the
image, respectively.

B. Baseline Algorithm Details
B.1. Dual Attention network details

As discussed in section 4, we add a positional attention
module (PAM) and channel attention module (CAM) to our
baseline. In Figure 13 we show diagrams for these two mod-
ules.



Figure 13. The image here shows the PAM module (top) and the
CAM module (bottom) proposed by [12]

B.2. Pooling operation

The detailed algorithm for Mixture Pooling as Inpainting
is shown in Algorithm 1, mentioned in section 4. This is a
modification from Max Pooling as Inpainting, we refer the
reader to [23] for that algorithm. Qualitative results com-
paring Max Pooling vs Mixture pooling are demonstrated
in Figure 14.

Figure 14. The top row shows our proposed baseline prediction
results with Max Pooling as Inpainting and Mixture Pooling as In-
painting respectively. The bottom row shows our proposed base-
line prediction results with and without sum operation in the road
segmentation branch respectively.

C. Training and inference code: amodal road
Training and inference code is here: https://github.

com/coolgrasshopper/amodal_road_segmentation

D. Training details & visualization results
D.1. Hyperparameters & Error analysis

The detailed hyperparameters for our baseline network
discussed in section 4 are demonstrated in our released
source code. In general, we train the network using 240
epochs with initial learning rate 0.3 and weight decay 1e−

Algorithm 1 Mixture Pooling as Inpainting

Require: Fraw - intermediate feature map; M binary fore-
ground mask with 1 being background

Ensure: Finpainted is inpainted feature map
M = max-pooling(M)
Fbackground = Fraw ×M
Fpatch = zero tensor with size same as Fbackground

Mold =M
do

Fbackground = 0.5∗ max-pooling (Fbackground)
+0.5∗ avg-pooling (Fbackground)

Mnew = max-pooling (Mold)
Fpatch+ = (Mnew −Mold) ∗ Fbackground

Mold =Mnew

while 0 still exists in Mold

Finpainted = Fraw ∗M + Fpatch

04 through the training process. Additionally, we set differ-
ent seeds three times and record the error bars for our pro-
posed baseline in Table 9. Also, the standard deviation for
the three conducted experiments are 0.042% and 0.041%
for the far and close IOU respectively. For both the close
and far IOU, the errors and standard deviations are within
0.1% using our proposed baseline. This shows that our ex-
periments’ results are reproducible.

D.2. Qualitative performance evaluation of SFI

The qualitative evaluation of SFI is shown in Figure 15
demonstrating the failure cases of SFI under challenging
scenarios (e.g. cluttered scenes, night and faraway regions).

Figure 15. Visualized failure cases of the Semantic Foreground
Inpainting network. Ground-truth overlay results are shown in the
top row and network prediction results are in the bottom row.

D.3. Far & Close IOU calculation

To calculate the far and close IOU, for each image k,
we group each pixel i based on its the depth dki. The set
which contains all pixels with dki < 30 is denoted as DCk.
The set that contains all pixels with dki ≥ 30 is denoted as
DFk. After that, for the test dataset that contains N total
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test images, the close IOU is calculated as:∑N
k=0 IDCkg

∩ IDCkp∑N
k=0 IDCkg

∪ IDCkp

(1)

where IDCkg
demonstrates for pixels with depth dki < 30,

the ground-truth binary mask for Amodal road segmenta-
tion at image k and IDCkp

indicates the Amodal road seg-
mentation prediction at image k for close pixels.

Similarly, the far IOU is calcuated as:∑N
k=0 IDFkg

∩ IDFkp∑N
k=0 IDFkg

∪ IDFkp

(2)

where IDFkg
demonstrates for pixels with depth dki ≥ 30,

the ground-truth binary mask for Amodal road segmenta-
tion at image k and IDFkp

indicates the Amodal road seg-
mentation prediction at image k for far pixels.

We also attached the evaluation code in our anonymously
released code: https://github.com/coolgrasshopper/

amodal_road_segmentation

D.4. Split by location results

To investigate the effects of training on different road
types and surrounding environments, we split the dataset
into five different areas: urban, highway, rural, campus,
downtown. Then, we train our proposed baseline using
images collected at each location respectively. For each
trained model, we test the model’s performance using the
dataset collected under the other four location types. The
detailed performance is illustrated in Table 8. We observe
that many models seem to drop in performance in the cam-
pus and urban environment. A potential reason for this is
that urban areas contain more curved roads, and higher lev-
els of occlusions and less visibility due to nearby buildings
and vehicles, while campus contains some complex road
structures with intersections and road islands (islets).

D.5. Ablation study of our proposed baseline

We conduct an ablation study of our proposed model by
removing the added sum operation in the road segmentation
branch and not modifying the original Max pooling as In-
painting operation (i.e., removing the mixture pooling oper-
ation). That is, we remove the sum operation but keep Mix-
ture pooling as Inpainting (third row of Table 9). We also
keep the sum operation but use Max pooling as in paint-
ing (fourth row of Table 9). Finally we also add the feature
map from the channel attention module (fifth row of Ta-
ble 9). This channel attention module is to stress the inter-
dependencies of feature maps. As each feature map can be
regarded as a class-specific response, channel attention can
also be interpreted as emphasizing the inter-dependencies
of different (foreground) classes. For road segmentation,

Table 8. Results (IOU for road) on model performance among
five different locations. On each entry (row, column), we report
training on row and testing on column using our proposed baseline.

Far IOU Urban Downtown Highway Rural Campus

Urban N/A 46.93 38.57 43.40 35.92
Downtown 51.43 N/A 51.93 55.81 41.55

Highway 36.76 46.11 N/A 57.35 39.19
Rural 43.64 47.18 53.92 N/A 39.73

Campus 42.53 50.55 53.63 57.16 N/A

Close IOU Urban Downtown Highway Rural Campus

Urban N/A 94.04 88.11 87.54 92.16
Downtown 90.19 N/A 94.17 88.46 93.79

Highway 86.54 92.90 N/A 88.27 91.36
Rural 92.89 93.40 91.95 N/A 91.17

Campus 92.95 94.32 94.21 89.94 N/A

since we only have one semantic class, we remove the mod-
ule to save computation in our proposed baseline. We test
all trained models using the total collected test dataset and
illustrate the close and far IOU. The results are shown Ta-
ble 9. We also demonstrate the close and far IOU perfor-
mances of SFI and our proposed baselines in Table 9.

Table 9. Ablation study that removes the sum operation (‘w/o
sum’ row in the table) and the mixture pooling operation (‘w/o
mix pooling’ row in the table) in the road segmentation branch
respectively. We also include the close and far IOU for SFI and
our proposed baselines in the table.

Architectures Close IOU Far IOU
SFI 91.55 52.16
w/o sum 93.19 55.06
w/o mix pooling 93.08 54.77
w/ mapCF 93.58 57.06
Ours 93.29 (± 0.072) 56.67 (± 0.075)

D.6. Qualitative experiment results

Finally, we demonstrate the visualization results of
amodal instance segmentation in Figure 18. From the visu-
alization results, we find that cars and pedestrians are pre-
dicted more accurately under sunny situation than snowy
and night situations. This underscores visual challenges
for amodal scene reasoning under more adverse conditions.
Qualitative results split by sunny, rainy, cloudy, night and
snowy conditions are shown in Figure 19 to Figure 23 for
amodal road segmentation. The green line demonstrates the
closest horizontal line (height) to the bottom of the image
which has depth dh ≥ 30. See Section D.3 for detailed
calculation).
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Amodal Instance Segmentation
Groundtruth Sunny Snow
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Figure 18. MaskRCNN model trained on the sunny (second col-
umn) and snowy (third column) datasets. The groundtruth is
shown in the first column. The row indicates the condition being
tested on (i.e. sunny first row, snowy second row).

Figure 19. Road inference for the two baselines. Orange indicates
models trained on rainy with the first row testing on rainy and sec-
ond row on night. Black indicates training on night with the third
row testing on rainy and the fourth row testing on night. Above
green line (30m) is the far IOU and below it is close IOU.

Figure 20. Road inference for two baselines. Red indicates model
trained on Sunny with the first row is testing on sunny and second
row on night. Black indicates training on night with the third row
testing on sunny and the fourth row testing on night. Above green
line (30m) is the far IOU and below it is close IOU.

Figure 21. Road inference for two baselines. Grey indicates model
trained on cloudy with the first row testing on cloudy and second
row on night. Black indicates training on night with the third row
testing on cloudy and the fourth row testing on night. Above green
line (30m) is the far IOU and below it is close IOU.

Figure 22. Road inference for two baselines. Grey indicates model
trained on cloudy with the first row testing on cloudy and second
row on snow. Blue indicates training on snow with the third row
testing on cloudy and the fourth row testing on snow. Above green
line (30m) is the far IOU and below it is close IOU.

Figure 23. Road inference for two baselines. Orange indicates
model trained on rainy with the first row testing on rainy and sec-
ond row on snow. Blue indicates training on snow with the third
row testing on rainy and the fourth row testing on snow. Above
green line (30m) is the far IOU and below it is close IOU.


	. Dataset details
	. Visualizations of depth mask ground-truth
	. Sensor time synchronization details.
	. Dataset Statistics

	. Baseline Algorithm Details
	. Dual Attention network details
	. Pooling operation

	. Training and inference code: amodal road
	. Training details & visualization results
	. Hyperparameters & Error analysis
	. Qualitative performance evaluation of SFI
	. Far & Close IOU calculation
	. Split by location results
	. Ablation study of our proposed baseline
	. Qualitative experiment results


