
Supplemental Material for Forecasting Characteristic 3D Poses of Human Actions

In this supplemental, we show additional qualitative re-
sults (Sec. 1), additional quantitative analysis (Sec. 2), de-
tail our network architecture specification (Sec. 3), provide
additional details regarding the dataset (Sec. 4) as well as
our training setup (Sec. 5), and discuss potential negative
societal impacts of our method (Sec. 6).

1. Additional Qualitative Results.
We show additional qualitative results of our method in

Fig. 2, which demonstrate the diversity of our characteristic
pose predictions for a given input sequence. Our approach
not only effectively models the multi-modal nature of char-
acteristic poses, but also captures the final target action pose
(highlighted pose prediction).

In cases where the time between input sequence and tar-
get pose is longer, such as in ‘sit’ or ‘greet’, our approach
produces a more diverse set of action poses, capturing the
ambiguity in the future characteristic pose. When the input
sequence is close to the target pose, our approach converges
to a small set of probable poses (for example, in ‘drink’),
reflecting the reduced ambiguity.

2. Additional Quantitative Results.
MPJPE baseline comparison, by goal-normalized input
time Fig. 1 shows MPJPE for varying input sequence start
times in comparison with state of the art, goal-normalized
from the start of each sequence (0) to N frames before the
characteristic pose (1), with three steps inbetween.

Autoregressive Joint Order. We determined the order
of the joints for the autoregressive prediction empirically;
most ambiguity occurred in active end-effectors (i.e. right
and left hands), whereas the rest of the body tended to have
lower variability. In Tab. 1, we compare our original ap-
proach of (right hand, left hand, rest) with two alternatives:
(left hand, right hand, rest), and (full autoregressive from
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Figure 1. MPJPE comparison to baselines, evaluating with the
input sequence at different points in time: from the start of the
sequence (0) to N frames before the target characteristic pose (1).

Order MPJPE ↓ Div. ↑ IS ↑

right hand → left hand → rest 0.054 0.105 4.15 ±0.9

left hand → right hand → rest 0.057 0.049 4.09 ±1.6

following the kinematic chain 0.058 0.018 4.02 ±0.9

Table 1. Ablation analysis on autoregressive order on GRAB data.

human kinematic chain following left/right hands). Our
method is robust to these orderings (though diversity of the
rest of the body except hands decreases with autoregression
through the kinematic chain).

Grid Resolution and Offset Prediction. We show addi-
tional ablations on the effect of grid resolution and offset
prediction in Tab 2 on GRAB data; A resolution of 163 per-
forms better than 83 or 323. Our offset prediction helps
mitigate grid artifacts even at 323.

Resolution Offsets MPJPE ↓ Diversity ↑ IS ↑

83 × 0.242 0.189 1.40 ±0.3

83 ✓ 0.092 0.068 1.71 ±0.1

163 × 0.127 0.081 1.51 ±0.1

163 ✓ 0.054 0.105 4.15 ±0.9

323 × 0.118 0.122 2.39 ±0.2

323 ✓ 0.066 0.058 1.91 ±0.2

Table 2. Ablation analysis on heatmap grid size and offset predic-
tion on GRAB data.

Per-Bodypart MPJPE. In Tab. 6, we show our final pose
prediction performance in MPJPE, broken down per body-
part, as compared to sequential baselines.

Characteristic Pose Forecasting with Ground Truth Ac-
tion Labels. In Tab. 3, we additionally evaluate our ap-
proach using ground truth action labels as input to provide
additional contextual information.

The ground truth action label is processed as an addi-
tional attention node alongside input and previously pre-
dicted joint locations. This action label information reduces
ambiguity in the possible set of output poses, resulting in
reduced diversity, as is reflected in the diversity metric and
inception score (as this directly considers diversity).

In our original action-agnostic scenario, our approach
predicts plausible and diverse characteristic poses across all
actions.

GRAB Human3.6M
MPJPE ↓ Div. ↑ IS ↑ MPJPE ↓ Div. ↑ IS ↑

× 0.054 0.105 4.153 ±0.87 0.092 0.189 3.139 ±0.32

✓ 0.051 0.026 1.085 ±0.02 0.094 0.044 1.700 ±0.06

Table 3. Comparison of ours to an ablation with ground truth
action labels as additional input.



Figure 2. Additional qualitative results, showing the for each action sequence the inputs (left), our diverse set of predictions (middle) and
the target action pose (right). Our final pose prediction is highlighted for each action sequence.
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Figure 3. Times at which characteristic poses occur for GRAB.
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Figure 4. Times at which char. poses occur for Human3.6M.

3. Architecture Details

Fig. 6 details our network specification from input (left)
to heatmap and offsets output (right). For each GRU layer,
we provide the hidden dimension and number of layers in
parentheses, for normalization layers the dimension to be
normalized over, for dropout layers the dropout probabil-
ity p, and for convolutions the number of input and output
channels as well as kernel size (ks), stride (str), and padding
(pad). We apply cross-entropy (CE) losses at a heatmap res-
olution of 83 and at the final resolution of 163; for the off-
sets prediction, we concatenate the offsets volume gener-
ated from the last input skeleton after 5 convolution blocks
and supervise the final predictions with an ℓ1 loss.

We take as input 25 joints in the case of GRAB and
17 joints for Human3.6M (#in joints). The number of out-
put joints (#out joints) depends on whether the right or left
hand is being predicted (#out joints=1) or the rest of the
body (#out joints=23 for GRAB, #out joints=15 for Hu-
man3.6M). In all our experiments, we use 10 as the number
of probability bins.

4. Dataset

GRAB Pose Layout. Since GRAB [8] not only provides
a human skeleton representation but full body shape param-
eters, we preprocess all pose sequences by first extracting
relevant joints for our approach. For this, we chose the 3d

Figure 5. GRAB [8] body and our extracted skeleton joints over-
laid (left); 17-joint skeleton based on Human3.6M [4] (right).

OpenPose [3] layout as it describes the prevalent body joints
and is widely used for representing 3d poses. Note that we
do not apply the OpenPose method on 2d data; we only use
their joint definitions in 3d. We extract 25 body joints from
the SMPL-X body given by the GRAB dataset [8] using the
correspondences shown in Tab. 5. Additionally, we denote
in Tab. 5 the correspondences of joints to body parts, for the
body part analysis in Tab. 6. Fig. 5 (left) visualizes our joint
selection, overlaying the body shape given in GRAB as a
point cloud over the 25-joint skeleton.

Human3.6M Pose Layout. For all our experiments on
Human3.6M [4], we use 17 pose joints, visualized in Fig. 5
(right). Tab. 4 describes the exact joints used as well as the
correspondences of joints to body parts, as used in Tab. 6.

Visualization Details. While our approach is agnostic to
context or action, we visualize the context provided by
GRAB [2, 8] (of the table and object) and action label pro-
vided by both GRAB and Human3.6M to help contextual-
ize the pose visualizations. The context and action labels
are not taken into account by the network or the evaluation,
meaning that our approach infers plausible human action
poses while being agnostic towards action and context.

Additional Characteristic 3D Pose Details. We show
additional characteristic 3d poses in their original sequences
in Fig. 7, and note the strong time differences at which
the characteristic poses occur. Furthermore, Fig. 3 and
Fig. 4 show the times during the sequences at which the
characteristic 3d poses are annotated for GRAB and Hu-
man3.6M; these characteristic poses are distributed across
a wide range (0-12 seconds and 0-40 seconds, respectively)
of time.

5. Additional Training Details
Cross Entropy Loss. Since our approach learns to predict
the probabilities of a Gaussian-smoothed target point during
training, we observe a very large class imbalance between
the no-probability bin (bin 0) and the rest of the bins. We
thus weigh the classes in the cross entropy loss to account



for the class imbalances, by the inverse of their log-scaled
occurrence, and a weight of 0.1 for the no-probability bin.

Ours (17-Joint) Base (Human3.6M)
Idx Label Label Idx

R
.L

eg 1 R. Hip R. Hip 1
2 R. Knee R. Knee 2
3 R. Foot R. Heel 3

L
.L

eg 4 L. Hip L. Hip 6
5 L. Knee L. Knee 7
6 L. Foot L. Heel 8

R
.A

rm 14 R. Shoulder R. Shoulder 25
15 R. Elbow R. Elbow 26
16 R. Hand R. Hand 27

L
.A

rm 11 L. Shoulder L. Shoulder 17
12 L. Elbow L. Elbow 18
13 L. Hand L. Hand 19

Sp
in

e 7 Spine Spine 12
0 Hip Hip 0

H
ea

d 9 Nose Nose 14
10 Head Head 15
8 Thorax Thorax 13

Table 4. Joint Correspondences for Human3.6M

Ours (OpenPose [3]) Base (SMPL-X [7])
Idx Label Label Idx

R
.A

rm 2 Right Shoulder Right Shoulder 17
3 Right Elbow Right Elbow 19
4 Right Finger Right Index 3 42

L
.A

rm 5 Left Shoulder Left Shoulder 16
6 Left Elbow Left Elbow 18
7 Left Finger Left Index 3 27

R
ig

ht
L

eg

9 Right Hip Right Hip 2
10 Right Knee Right Knee 5
11 Right Ankle Right Ankle 8
22 Right Big Toe Right Big Toe 63
23 Right Small Toe Right Small Toe 64
24 Right Heel Right Heel 65

L
ef

tL
eg

12 Left Hip Left Hip 1
13 Left Knee Left Knee 4
14 Left Ankle Left Ankle 7
19 Left Big Toe Left Big Toe 60
20 Left Small Toe Left Small Toe 61
21 Left Heel Left Heel 62

H
ea

d

0 Nose Nose 55
1 Neck Neck 12
15 Right Eye Right Eye 24
16 Left Eye Left Eye 23
17 Right Ear Right Ear 58
18 Left Ear Left Ear 59
8 Mid-Hip Pelvis 0

Table 5. Joint Correspondences for GRAB
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Figure 6. Our network architecture with details for encoder, scaled dot-product attention, as well as heatmap and offsets decoders.



GRAB H3.6M
Method R. Arm ↓ L. Arm ↓ R. Leg ↓ L. Leg ↓ Spine ↓ Head ↓ R. Arm ↓ L. Arm ↓ R. Leg ↓ L. Leg ↓ Spine ↓ Head ↓
L. T. D. [6] 0.165 0.115 0.058 0.057 0.028 0.085 0.225 0.225 0.135 0.146 0.108 0.123
H. R. I. [5] 0.160 0.113 0.056 0.055 0.026 0.079 0.199 0.191 0.079 0.088 0.040 0.089
DLow [9] 0.146 0.109 0.052 0.050 0.024 0.068 0.174 0.169 0.108 0.112 0.044 0.096
Ours 0.105 0.084 0.045 0.045 0.020 0.057 0.147 0.122 0.091 0.085 0.033 0.066

Table 6. Characteristic 3d pose prediction performance comparison to baselines, broken down by body part MPJPE.

State-of-the-art comparisons. We use the official code
with default settings of the methods we compare to ( [6], [5],
and [9]). We train all methods from scratch on our charac-
teristic 3d pose dataset, setting the number of input frames
to 10 and the number of output frames to 100. From the
predicted sequence, we evaluate the pose at a timestep pre-
dicted by the baselines themselves as characteristic pose
and compare it to the target. This scenario is the closest to
our approach, as predicting characteristic 3d poses involves
which pose is the characteristic pose.

Therefore, we modified each baseline with a small pre-
diction head to predict the characteristic pose frame within
all 100 frames of the predicted sequence. In all cases, we
supervise this prediction as a classification problem with
a cross entropy loss and train the additional head together
with the rest of the model.

For DLow [9], we add one linear layer to the final fea-
ture output of each of the 100 steps, followed by a ReLU,
reducing each step’s output dimension to 10. Then, one ad-
ditional linear layer summarizes the combined output of all
steps (100 ∗ 10) down to a vector of size 100.

In the case of History Repeats Itself [5], we add a classi-
fication head consisting of one linear layer, a 1d batch norm,
a ReLU, and one additional linear layer to the output of their
last Graph Convolution Block (GCN). While the first linear
layer keeps the original dimensionality of 100, the second
linear layer reduces the dimension from #graph nodes∗100
down to 100.

Finally, for Learning Trajectory Dependencies [6], we
apply the same architecture and add a linear layer, a 1d
batch norm, a ReLU, and a second linear layer after the fi-
nal GCN. Here, we first reduce the per-node feature dimen-
sion from 256 to 100 and combine the features of all nodes
with the second linear layer, going from #graph nodes∗100
down to 100.

In the main paper, we additionally evaluated against
these baseline approaches when given ground-truth time
steps instead; in this scenario, our predictions also outper-
form the baselines given ground truth times for characteris-
tic poses.

To evaluate the diversity and quality of multi-modal out-
puts, 10 samples are taken from a probabilistic method for
each input sequence, and we report diversity in terms of
MPJPE between samples as well as the Inception Score, fol-
lowing [1].

6. Potential Negative Societal Impacts
As we aim to study human pose behavior, we must take

care to ensure that datasets used represent notable diver-
sity in those represented. Our approach currently operates
on skeleton abstractions that do not characterize finer-scale
appearance differences; in possible future studies that may
aim to characterize fine-scale interactions, diversity in body
shape representations which must be taken into account for
data collection and analysis.

In particular, in our scenario of forecasting probable fu-
ture human behavior, we must also ensure that this possibil-
ity cannot be easily used for generating fraudulent motion
video of a person. Such usage is currently severely limited
in our proposed approach, as it does not target individual
people, and does not model photo-realistic characteristics
of people.

Another concern might arise with the possibility of
surveillance, in the context of predicting specific actions
from only a short and possibly ambiguous observation of
a person. The types of actions are currently limited by
the training data to everyday activities such as eating or
walking. With modified datasets, the prediction of various
specific action sub-categories might be possible (e.g., fore-
casting possible malicious actions). While simpler methods
may be more suitable for this kind of task, here we look to
efforts in data transparency; we will provide our annotations
and various statistics to characterize the everyday activities
in our considered data.

Another axis to consider is that of environmental impact,
in the cost of training deep neural networks. Our training
time is relatively short with only a few hours until conver-
gence and a moderately sized neural network. Additionally,
adversarial attacks are a possibility to disrupt future predic-
tions, but do not induce security concerns for our approach
directly.



Figure 7. Sample input-target pairs (colored) for our characteristic 3d pose forecasting task, with temporal snapshots along the sequence
(grayscale). Each snapshot is half a second apart. Depicted as input is the last frame of the respective input sequence.



References
[1] Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salz-

mann, Lars Petersson, and Stephen Gould. A stochastic condi-
tioning scheme for diverse human motion prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5223–5232, 2020. 5

[2] Samarth Brahmbhatt, Cusuh Ham, Charles C. Kemp, and
James Hays. ContactDB: Analyzing and predicting grasp con-
tact via thermal imaging. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 3

[3] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019. 3, 4

[4] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Trans. Pattern Anal. Mach. Intell., 36(7):1325–1339,
2014. 3

[5] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History
repeats itself: Human motion prediction via motion atten-
tion. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Computer Vision - ECCV 2020
- 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XIV, volume 12359 of Lecture Notes
in Computer Science, pages 474–489. Springer, 2020. 5

[6] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong
Li. Learning trajectory dependencies for human motion pre-
diction. In 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October
27 - November 2, 2019, pages 9488–9496. IEEE, 2019. 5

[7] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo
Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pages 10975–10985.
Computer Vision Foundation / IEEE, 2019. 4

[8] Omid Taheri, Nima Ghorbani, Michael J. Black, and Dim-
itrios Tzionas. GRAB: A dataset of whole-body human grasp-
ing of objects. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision -
ECCV 2020 - 16th European Conference, Glasgow, UK, Au-
gust 23-28, 2020, Proceedings, Part IV, volume 12349 of Lec-
ture Notes in Computer Science, pages 581–600. Springer,
2020. 3

[9] Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows for
diverse human motion prediction. In European Conference on
Computer Vision, pages 346–364. Springer, 2020. 5


