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Supplementary Material

This supplementary material provides proofs and additional details for our approach. Specifically, Appx. A derives the
Gâteaux variations of our atlas building models leading to the closed-form solution of Eqs. (2.3-2.4); Appx. B discusses the
optimization-based atlas building and registration literature in detail; Appx. C presents the proof of the SVF-based Euler-
Lagrange equations; Appx. D includes details about experimental settings and hyperparameter tuning.

A. Gâteaux variation of backward and forward atlas building models
As discussed in Sec. 2, we can deduct the closed-form solutions for the atlas in both backward and forward models via

optimization theory. For simplicity, we define Lsim as the squared L2 norm, i.e., Lsim(I, J) = kI�Jk22 = hI�J, I�Ji =R
⌦(I(x) � J(x))2 dx, where ⌦ is the domain, x 2 ⌦ is the position, and h·, ·i is the usual L2-product for square integrable

vector-fields on ⌦. Denote the energy functional of Eq. (2.1) as E1 and Eq. (2.2) as E2, i.e.,
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By Gâteaux variation w.r.t. I, we have
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where (a) corresponds to a change of variables: i.e., setting ��1
�i

(x) = y or equivalently ��i(y) = x, which results in the
Jacobian change of variables |D��i(y)|dy = dx. For (b), the transformation ��1

� : ⌦ ! ⌦, where ⌦ ✓ Rd (d = 2 for 2D or
d = 3 for 3D). Hence, changing variables does not change the domain, i.e. ⌦

0
= ⌦.

B. Related work: optimization-based atlas building and registration approaches
This section briefly introduces optimization-based atlas building and registration approaches.
Optimization-based backward atlas building and registration models: Bhatia et al. [8] build an atlas by forcing the sum

of deformations from all images to be zero and showed good performance in a small deformation setting. To address image
datasets with large deformations, Lorenzen et al. [29] and Avants et al. [4] use an unbiased atlas construction scheme in the
space of diffeomorphisms via the large deformation diffeomorphic metric mapping (LDDMM) model [6]. As an extension,
Lorenzen et al. [30] extended their work to multi-modal image set registration and multi-class atlas formation by minimizing
the Kullback-Leibler divergence between the estimated posteriors in a Bayesian framework. Bhatia et al. [7] introduced
an iterative Expectation-Maximization (EM) framework to simultaneously improve both the alignment of images to their
average image, as well as the segmentation of structures in the average space. Van et al. [44] use mesh-based representations
to generalize a probabilistic atlas building approach to a joint registration and atlas estimation Bayesian inference model,
which automatically determines the optimal amount of spatial blurring, the best deformation field flexibility, and the most
compact mesh representation. Fletcher et al. [20] deveoped a robust brain atlas estimation technique based on the geometric
median in the LDDMM framework. To avoid building a fuzzy atlas, Wu et al. [49, 47] proposed to average the aligned images
according to anatomical shape and distances of local patches, instead of direcly using an intensity average. Wang et al. [46]
decompose a large-scale groupwise registration problem into a series of small-scale problems, which are easier to solve and
thus help registration robustness. Jia et al. [26] proposed a hierarchical groupwise registration framework termed ABSORB,
which bundles similar images thus reducing registration errors and generating smooth registration paths. Debroux et al. [13]
proposed a variational model for joint segmentation, registration and atlas generation.

Optimization-based forward atlas building and registration models: The forward atlas building model is motivated
by the notion of deformable templates introduced in [22]. Given a template image I , an entire family of new images with
similar anatomical structures is modeled as the orbit of a group of diffeomorphisms G, i.e., Orb(I) = {I � �

�1 : � 2 G}.
Ma et al. [31, 32] formulated atlas building in a Bayesian framework and use Mode Approximation of the EM algorithm
to build the atlas. Durrleman et al. [17] apply a forward model to build atlases for curves and surfaces. Zhang et al. [53]
proposed a generative model to jointly estimate the registration regularity, noise variance, and the atlas. Singh et al. [43] use
a vector initial momentum parameterization of diffeomorphisms for atlas construction. To accommodate complex structural
differences across a heterogeneous group of images, Zhang et al. [52] proposed a generative Gaussian mixture model for
diffeomorphic multi-atlas building.

C. SVF based Euler-Lagrange equation
This section discusses the derivation of the Euler-Lagrange equations of the regularized stationary velocity field forward

atlas building model (i.e. Eq. (3.4)).
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Proof. See [6].

Theorem 1. Given a continuous differentiable idealized atlas image I and a population of noisy observed anatomies {Ii}
(i = 1, ..., N ), the {v⇤i } minimizing the following energy functional
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satisfy the Euler-Lagrange equation
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Proof. The Euler-Lagrange equation associated to energy functional E0({vi}) is obtained by setting the Fréchet derivative
rviE0({vi}) to zero for each i. Let the velocity vi be perturbed by an ✏ amount along direction hi. The Fréchet derivative
rviE0({vi}) can be computed from the Gâteaux variation @hiE0({vi}) by
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Denote Ereg(vi) = Reg(vi) and Esim(vi) = kI � �vi
1,0 � Iik22, then we have @hiE0({vi}) = �@hiEreg(vi) + @hiEsim(vi).

The variation of Ereg(vi) is
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Collecting terms, the Fréchet derivative rviE0({vi}) is
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This equation yields the Euler-Lagrange Eq. (C.3).

Theorem 2. Given a continuous differentiable idealized atlas image I and a population of noisy observed anatomies {Ii}
(i = 1, ..., N ), the {v⇤i } minimizing the following energy functional
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satisfy the Euler-Lagrange equation
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Proof. Similar to the proof of Theorem 1, we need to calculate the Fréchet derivative rviE1({vi}). Denote Eatlas
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Before calculating the variation of Eimage
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t,0|(Ĩ � �
vi
t,0 � Ii � �vi

t,1)r(Ii � �vi
t,1)

⌘
dt, hi

E

where (a) is using Ĩ to represent
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The variation of Eimage
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This equation yields the Euler-Lagrange Eq. (C.7).

D. Experimental Details and Additional Results
This section provides details about our experimental settings and hyperparameter tuning. To ensure fair comparisons

between methods with different hyperparameter settings, we use the same random seed throughout all experiments. When
training or optimizing models, we obtain the best hyperparameters for each model by tuning on the same hold-out validation
dataset with grid search over a subset of hyperparameter combinations. Then the estimated best hyperparameters are used
to report the performances in the test dataset. The presented results are from a single instance of each model, not averaged
repeated results with different initializations and hyperparameters.



Figure 5: Examples of atlases and images in axial, coronal, and sagittal planes. Top: two example images. Middle: initial averaged atlas
without and with affine pre-alignment. Bottom: Aladdin results without and with pairwise alignment loss. Aladdin obtains a relatively
sharp atlas, maintaining the main structures, from the image population.

D.1. Fig. 4 experimental details

In this experiment, we fix the atlas and use the following parameters. The coefficient for the similarity loss is 10.0,
� = 20000.0, �1 = 2.0, and �2 = 5.0. We use ADAM as the optimizer to learn network parameters with a multi-step learning
rate over 500 epochs. The initial learning rate is 10�4, which is multiplied by 0.1 at the 300-th epoch and the 420-th epoch.
Batch size is 2. We use MSE as the similarity loss.

D.2. Tab. 2 experimental details

Affine Registration: Affine registrations are performed by iteratively registering all images to the average of all images and
updating the averaged image based on the resulting warped images. We use reg aladin of Nifty-Reg [40, 36, 34, 38]
for affine registration with MSE as similarity loss. These optimization-based affine transformations also serve as the affine
pre-alignments for other experiments that require affine pre-registrations.
Joshi et al. [27]: We use the Fast Symmetric Forces Demons Algorithm [45] (via SimpleITK) as the registration algorithm.
The Gaussian smoothing standard deviation for the displacement field is set to 1.2 and the total iteration number is set to
1,000. All the other hyperparameters are default. We use MSE as the similarity loss.
ABSORB [26]: We use Diffeomorphic Demons [45] (via SimpleITK) as the registration algorithm. The Gaussian smoothing
standard deviation for the displacement field is set to 2.0 and the total iteration number is set to 1,000. We set the ABSORB
hyperparameters as follows. We set the neighborhood size to 3, the Gaussian smoothing standard deviation for the displace-
ment field is set to 2.0, the maximum number of levels to 3, the registration to mean to 1, histogram matching to true, and
affine registration to false. All the other hyperparameters are default. We use MSE as the similarity loss.
Voxelmorph [5]: We set the regularization coefficient to 2,000 for experiments with affine pre-alignment and to 400 without
affine pre-alignments. We use ADAM as the optimizer with learning rate 10�4. Batch size is 4. We use MSE as the similarity
loss.
He et al. [23]: We implement this method based on the descriptions in [23]. We use a 1-step 1-iteration framework to ensure



a fair comparison9. We add the atlas according to Eq. (2.3) in the implementation because we found that without an atlas the
registration performance is significantly worse than with an atlas. The coefficient for Lgrad is 10, the coefficient for Lpres

is 1.0, the coefficient for Lsim is 0.4, and the coefficient for Lcycle is 0.1. We use ADAM as the optimizer with learning rate
10�4 over 500 epochs. Batch size is 8. We use NCC as the similarity loss.
Dalca et al. [12]: For experiments with affine pre-alignment we set � = 0.01, �d = 1.0, �a = 100.0, and �

2 = 0.5. For
experiments without affine pre-alignment we set � = 0.01, �d = 0.2, �a = 20.0, and �

2 = 0.5. For experiments involving
pairwise alignment losses, �1 = 0.2 and �2 = 0.5 have the best performance on the validation dataset. We use ADAM as the
optimizer with learning rate 10�4 over 500 epochs. Batch size is 2. We use MSE as the similarity loss.
Aladdin: When specifying the atlas as in Eq. (2.4), the following hyperparameters achieve the best performance in the val-
idation dataset: the coefficient for the similarity loss is 10.0, � = 1000.0, �1 = 1.0 and �2 = 5.0. We use ADAM as the
optimizer to learn network parameters with learning rate 10�4 over 500 epochs. Batch size is 2. We use MSE and NCC as
the similarity losses in different experiments. When learning the atlas, we use another SGD optimizer with learning rate 104.
When using NCC as the similarity loss, the coefficient of the similarity loss changes to 0.3 and �2 = 0.15.

D.3. Inverse deformation map calculation
For our approach and Dalca et al. [12], the inverse transformations are directly available. For all other baseline models,

where inverse deformation maps are not available as part of the implementations, we obtain them numerically by solving
argmin� k����Idk22+k����Idk22, where � is the known deformation map and � is the sought-for inverse transformation
map. We optimize using ADAM [28] with learning rate 10�4 until convergence. The loss is defined as L = k� � �� Idk22 +
k� � �� Idk22 and � is the to-be-optimized parameter.

D.4. Example of an atlas built using Aladdin

Fig. 5 shows that images differ a lot in the image population. Hence the initial averaged atlas without affine pre-alignment
is very fuzzy. Note that the averaging equation in the middle row is Eq. (2.3) and the averaging equation in the bottom row
is Eq. (2.4) due to their backward and forward nature. After the affine alignments, the averaged atlas is clearer and more
anatomical structures can be observed. Aladdin results in an even clearer structure, which means training images align well
in atlas space. Besides, Aladdin with pairwise alignment loss results in slightly better alignment for the training images as
indicated by the slightly clearer anatomical structures in the bottom row.

D.5. Evaluation measures for atlas building and registration in atlas space
In this work, we define evaluation measures in atlas space (i.e., datlask ) as
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in Sec. 4.1. In this definition, we first use a plurality voting scheme to obtain the consensus segmentation among all warped
segmentations and then compare it with each warped segmentation. Note that in some other work [23, 24] evaluation mea-
sures in atlas space are defined without a consensus segmentation, i.e.,
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where � = {(i, j)|i = 1, 2, ...,M, j = 1, 2, ...,M, i < j} is the set of all pairwise index combinations where the first index is
smaller than the second index. Both evaluation measures are reasonable but evaluating Eq. (D.1) has O(N) complexity while
evaluating Eq. (D.2) has O(N2) complexity. Therefore, we choose Eq. (D.1) as the evaluation measure in atlas space to save
computational time especially for images with multiple structures. The same reasoning also applies to our atlas-as-a-bridge
evaluation measure d

bridge
k in Sec. 4.1.

D.6. Regularization
Aladdin is the only atlas building approach that uses the bending energy for regularization. The benefit of using the

bending energy comes from the fact that it is invariant to affine transformations. Therefore no separate affine pre-registration
9If we would use a multi-step and multi-iteration framework to generate better results, to ensure fair comparisons, all the other baseline methods would

also need to use a multi-step and multi-iteration approach.



is required. Assume we have an affine transformation of the form �aff = Ax+x+b, parameterized s.t. for A = 0, b = 0 we
obtain the identity transform. Therefore, we have @�aff

@x = A+ Id and @2�aff

@x2 = 0. Hence, the bending energy regularization
zeros out any affine contributions. Consequently, in contrast to approaches with zero or first order derivative terms in their
regularizer, Aladdin can simultaneously capture affine and nonparametric deformations.


