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A. Dataset Details

A.1. Key Statistics of Datasets

Tab. 1 summarizes the key statistics of these datasets.

Below we introduce each dataset in detail. The normal sam-

ples in MVTec AD are split into training and test sets fol-

lowing the original settings. In other datasets, the normal

samples are randomly split into training and test sets by a

ratio of 3/1.

MVTec AD [1] is a popular defect inspection benchmark

that has 15 different classes, with each anomaly class con-

taining one to several subclasses. In total the dataset con-

tains 73 defective classes of fine-grained anomaly classes at

the texture- or object-level.

AITEX [16] is a fabrics defect inspection dataset that

has 12 defect classes, with pixel-level defect annotation. We

crop the original 4096 × 256 image to several 256 × 256
patch image and relabel each patch by pixel-wise annota-

tion.

SDD [17] is a defect inspection dataset images of de-

fective production items with pixel-level defect annotation.

We vertically and equally divide the original 500 × 1250
image into three segment images and relabel each image by

pixel-wise annotation.

ELPV [3] is a solar cells defect inspection dataset in

electroluminescence imagery. It contains two defect classes

depending on solar cells: mono- and poly-crystalline.

Optical [20] is a synthetic dataset for defect detection on

industrial optical inspection. The artificially generated data

is similar to real-world tasks.

Mastcam [6] is a novelty detection dataset constructed

from geological image taken by a multispectral imaging

system installed in Mars exploration rovers. It contains

typical images and images of 11 novel geologic classes.

Images including shorter wavelength (color) channel and

longer wavelengths (grayscale) channel and we focus on

shorter wavelength channel in this work.
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Table 1. Key Statistics of Image Datasets. The first 15 datasets

compose the MVTec AD dataset.

Dataset Original Training Original Test Anomaly Data
Normal Normal Anomaly # Classes Type

Carpet 280 28 89 5 Texture

Grid 264 21 57 5 Texture

Leather 245 32 92 5 Texture

Tile 230 33 84 5 Texture

Wood 247 19 60 5 Texture

Bottle 209 20 63 3 Object

Capsule 219 23 109 5 Object

Pill 267 26 141 7 Object

Transistor 213 60 40 4 Object

Zipper 240 32 119 7 Object

Cable 224 58 92 8 Object

Hazelnut 391 40 70 4 Object

Metal nut 220 22 93 4 Object

Screw 320 41 119 5 Object

Toothbrush 60 12 30 1 Object

MVTec AD 3,629 467 1,258 73 -

AITEX 1,692 564 183 12 Texture

SDD 594 286 54 1 Texture

ELPV 1,131 377 715 2 Texture

Optical 10,500 3,500 2,100 1 Object

Mastcam 9,302 426 451 11 Object

BrainMRI 73 25 155 1 Medical

HeadCT 75 25 100 1 Medical

Hyper-Kvasir 2,021 674 757 4 Medical

BrainMRI [15] is a brain tumor detection dataset ob-

tained by magnetic resonance imaging (MRI) of the brain.

HeadCT [15] is a brain hemorrhage detection dataset

obtained by CT scan of head.

Hyper-Kvasir [2] is a large-scale open gastrointestinal

dataset collected during real gastro- and colonoscopy proce-

dures. It contains four main categories and 23 subcategories

of gastro- and colonoscopy images. This work focuses on

gastroscopy images with the anatomical landmark category

as the normal samples and the pathological category as the

anomalies.

To provide some intuitive understanding of what the

anomalies and normal samples look like, we present some

examples of normal and anomalous images for each dataset

in Fig. 1.
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Figure 1. Examples of normal and anomalous images for each dataset. For each group of examples, the images on the top are normal,

while the bottom ones are anomalous.

Table 2. Download Link of Image Datasets.

Dataset Link
MVTec AD https://tinyurl.com/mvtecad
AITEX https://tinyurl.com/aitex-defect
SDD https://tinyurl.com/KolektorSDD
ELPV https://tinyurl.com/elpv-crack
Optical https://tinyurl.com/optical-defect
Mastcam https://tinyurl.com/mastcam
BrainMRI https://tinyurl.com/brainMRI-tumor
HeadCT https://tinyurl.com/headCT-tumor
Hyper-Kvasir https://tinyurl.com/hyper-kvasir

A.2. Dataset Split

We have two experiment protocols, including general

and hard settings. For the general setting, the few labeled

anomaly samples are randomly drawn from all possible

anomaly classes in the test set per dataset. These sam-

pled anomalies are then removed from the test data. For the

hard setting, the anomaly example sampling is limited to be

drawn from one single anomaly class only, and all anomaly

samples in this anomaly class are removed from the test

set to ensure that the test set contains only unseen anomaly

classes. As labeled anomalies are difficult to obtain due to

their rareness and unknowingness, in both settings we use

only very limited labeled anomalies, i.e., with the number

of the given anomaly examples respectively fixed to one and

ten.

Additionally, to have a cross analysis of the results in the

one-shot and ten-shot scenarios, the one anomaly example

in the one-shot scenarios is randomly sampled from the ten

sampled anomaly examples in the ten-shot scenarios, and

they are all evaluated on exactly the same test data – the

test data used in ten-shot scenarios. That is, the only differ-



ence between the one-shot and ten-shot scenarios is on the

training anomaly examples.

B. Implementation Details
In this section, we describe the implementation details of

DRA and its competing methods.

B.1. Implementation of DRA

All input images are first resized to 448x448 or 224x224

according to the original resolution. We then use the Ima-

geNet pre-trained ResNet-18 for the feature extraction net-

work, which extracts a 512-dimensional feature map for

an input image. This feature map is then fed to the sub-

sequent abnormality/normality learning heads to learn dis-

entangled abnormalities. The Patch-wise classifier in Plain

Feature Learning adopted in the seen and pseudo abnormal-

ity learning heads is implemented by a 1x1 convolutional

layer that yields the anomaly score of each vector in the fea-

ture map. The normality learning head utilizes a two-layer

fully connected layer as the classifier, which first reduces a

512-dimensional feature vector to 256-dimensions and then

yields anomaly scores. In the training phase, each input

image is routed to different heads based on the labels, and

each head computes the loss independently. All its heads

are jointly trained using 30 epochs, with 20 iterations per

epoch and a batch size of 48. Adam is used for the param-

eter optimization using an initial learning rate 10−3 with a

weight decay of 10−2.

In the inference phase, each head yields anomaly scores

for the target image simultaneously. Since all heads are op-

timized by the same loss function, the anomaly scores gen-

erated by each head have the same semantic, and so we cal-

culate the sum of all the anomaly scores (and a negated nor-

mal score) as the final anomaly score. In addition, to solve

the multi-scale problem, we use an image pyramid mod-

ule with two-layer image pyramid, which obtains anomaly

scores at different scales by inputting original images of

various sizes, and calculates the mean value as the final

anomaly score.

For the reference sets in Latent Residual Abnormality

Learning, we found that mixing some generated pseudo-

anomaly samples into normal samples can further improve

performance. We speculate that adding pseudo-anomaly

samples can get more challenging residual samples to help

the network adapt to extreme cases. Therefore, we use the

dataset mixed with normal and pseudo-abnormal samples

as the reference set in the final implementation.

B.1.1 Loss Function

DRA can be optimized using different anomaly score loss

functions. We use deviation loss [11] in our final implemen-

tation to optimize DRA, because it is generally more effec-

tive and stable than other popular loss functions, as shown

in the experimental results in Section C.2. Particularly, a

deviation loss optimizes the anomaly scoring network by a

Gaussian prior score, with the deviation specified as a Z-

score:

dev(xi; Θ) =
g(f(x; Θf ); Θg)− μR

σR
, (1)

where μR and σR is the mean and standard deviation of the

prior-based anomaly score set drawn from N (μ, σ2). The

deviation loss is specified using the contrastive loss [4] with

the deviation plugged into:

�
(
xi, μR, σR; Θ

)
= (1− yi)|dev(xi; Θ)|
+ yi max

(
0, a− dev(xi; Θ)

)
, (2)

where y = 1 indicate an anomaly and y = 0 indicate a

normal sample, and a is equivalent to a Z-Score confidence

interval parameter.

B.2. Implementation of Competing Methods

In the main text, we present five recent and closely re-

lated state-of-the-art (SOTA) competing methods. Here we

introduce two additional competing methods. Following is

the detailed description and implementation details of these

seven methods:

KDAD [15] is an unsupervised deep anomaly detector

based on multi-resolution knowledge distillation. We ex-

periment with the code provided by its authors1 and report

the results. Since KDAD is unsupervised, it is trained with

normal data only, but it is evaluated on exactly the same test

data as DRA.

DevNet [11, 12] is a supervised deep anomaly detector

based on a prior-based deviation. The results we report are

based on the implementation provided by its authors2.

FLOS [9] is a deep imbalanced classifier that learns

a binary classification model using the class-imbalance-

sensitive loss – focal loss. The implementation of FLOS

is also taken from [11], which replaces the loss function of

DevNet with the focal loss.

SAOE is a deep out-of-distribution detector that utilizes

pseudo anomalies from both data augmentation-based and

outlier exposure-based methods. Motivated by the success

of using pseudo anomalies to improve anomaly detection

in recent studies [7, 18], SAOE is implemented by learn-

ing both seen and pseudo abnormalities through a multi-

class (i.e., normal class, seen anomaly class, and pseudo

anomaly class) classification head using the plain feature

learning method as in DRA. In addition to this multi-class

1https : / / github . com / rohban - lab / Knowledge _
Distillation_AD

2https://github.com/choubo/deviation-network-
image



Table 3. AUC results (mean±std) of DRA and two additional

competing methods under the general setting. All methods are

trained using ten random anomaly examples, with the best results

are highlighted.

Dataset |C| DeepSAD MINNS DRA (Ours)
Carpet 5 0.791±0.011 0.876±0.015 0.940±0.027

Grid 5 0.854±0.028 0.983±0.016 0.987±0.009

Leather 5 0.833±0.014 0.993±0.007 1.000±0.000

Tile 5 0.888±0.010 0.980±0.003 0.994±0.006

Wood 5 0.781±0.001 0.998±0.004 0.998±0.001

Bottle 3 0.913±0.002 0.995±0.007 1.000±0.000

Capsule 5 0.476±0.022 0.905±0.013 0.935±0.022

Pill 7 0.875±0.063 0.913±0.021 0.904±0.024

Transistor 4 0.868±0.006 0.889±0.032 0.915±0.025

Zipper 7 0.974±0.005 0.981±0.011 1.000±0.000

Cable 8 0.696±0.016 0.842±0.012 0.909±0.011

Hazelnut 4 1.000±0.000 1.000±0.000 1.000±0.000

Metal nut 4 0.860±0.053 0.984±0.002 0.997±0.002

Screw 5 0.774±0.081 0.932±0.035 0.977±0.009

Toothbrush 1 0.885±0.063 0.810±0.086 0.826±0.021

MVTec AD - 0.830±0.009 0.939±0.011 0.959±0.003

AITEX 12 0.686±0.028 0.813±0.030 0.893±0.017

SDD 1 0.963±0.005 0.961±0.016 0.991±0.005

ELPV 2 0.722±0.053 0.788±0.028 0.845±0.013

Optical 1 0.558±0.012 0.774±0.047 0.965±0.006

Mastcam 11 0.707±0.011 0.803±0.031 0.848±0.008

BrainMRI 1 0.850±0.016 0.943±0.031 0.970±0.003

HeadCT 1 0.928±0.005 0.984±0.010 0.972±0.002

Hyper-Kvasir 4 0.719±0.032 0.647±0.051 0.834±0.004

classification, the outlier exposure module [5] in SAOE is

implemented according to its authors3, in which the MVTec

AD [1] or LAG [8] dataset is used as external data. In all our

experiments we removed the related data from the outlier

data that has any overlapping with the target data to avoid

data leakage.

MLEP [10] is a deep open set anomaly detector based on

margin learning embedded prediction. The original MLEP4

is designed for open set video anomaly detection, and we

adapt it to image tasks by modifying the backbone network

and training settings to be consistent with DRA.

Deep SAD [14] is a supervised deep anomaly detector that

extends Deep SVDD [13] by using a few labeled anoma-

lies and normal samples to learn more compact one-class

descriptors. Particularly, it adds a new marginal constraint

to the original Deep SVDD that enforces a large margin be-

tween labeled anomalies and the one-class center in latent

space. The implementation of DeepSAD is taken from the

original authors5.

MINNS [19] is a deep multiple instance classification

model, which is implemented based on [11].

3https://github.com/hendrycks/outlier-exposure
4https://github.com/svip-lab/MLEP
5https://github.com/lukasruff/Deep-SAD-PyTorch

Figure 2. The AUC performance of our proposed method using

different loss functions under the hard setting. We report the aver-

aged results over all data subsets per dataset.

C. Additional Empirical Results
C.1. Additional Comparison Results

General Setting. We report the results of DRA and two

additional competing methods under general setting in Tab

3. Our method achieves the best AUC performance in eight

of the nine datasets and the close-to-best AUC performance

in the another dataset. In the eight best-performing datasets,

our method improves AUC by 2% to 19.1% over the best

competing method.

Hard Setting. Tab. 4 shows the results of DRA and

two additional competing methods under the hard setting.

Our method performs best on most of the data subsets

and achieves the best AUC performance on five of the six

datasets at the dataset level. Our method improves from

9.2% to 24.4% over the suboptimal method in the other five

datasets.

The experimental results in both settings show the supe-

riority of our method compared to Deep SAD and MINNS.

C.2. Sensitivity w.r.t. Loss Function

In our paper, we use the deviation loss [11] in all our

four heads by default. Here we vary the use of the loss

function and analyze the impact of the loss function on the

performance of anomaly detection. Any related binary clas-

sification loss functions may be used for training all the

four heads of DRA. We evaluate the applicability of two

additional popular loss functions, including binary cross-

entropy loss and focal loss, in addition to deviation loss.

The results are reported in Fig. 2, where all results are

the averaged AUC of three independent runs of the exper-

iments. In general, the deviation loss function, which is

specifically designed for anomaly detection, has clear supe-

riority on most cases. The two classification losses perform

better on the medical dataset Hyper-Kvasir. Based on such

empirical findings, the deviation loss function is generally

recommended in DRA.



Table 4. AUC results of DRA and two additional competing meth-

ods under the hard setting, where models are trained with one

known anomaly class and tested to detect the rest of all other

anomaly classes. Each data subset is named by the known anomaly

class.

Module DeepSAD MINNS DRA (Ours)

C
ar

pe
t

Color 0.736±0.007 0.767±0.011 0.886±0.042

Cut 0.612±0.034 0.694±0.068 0.922±0.038

Hole 0.576±0.036 0.766±0.007 0.947±0.016

Metal 0.732±0.042 0.789±0.097 0.933±0.022

Thread 0.979±0.000 0.982±0.008 0.989±0.004

Mean 0.727±0.011 0.800±0.022 0.935±0.013

M
et

al
nu

t Bent 0.821±0.023 0.868±0.033 0.990±0.003

Color 0.707±0.028 0.985±0.018 0.967±0.011

Flip 0.602±0.020 1.000±0.000 0.913±0.021

Scratch 0.654±0.004 0.978±0.000 0.911±0.034

Mean 0.696±0.012 0.958±0.008 0.945±0.017

A
IT

E
X

Broken end 0.442±0.029 0.708±0.103 0.693±0.099

Broken pick 0.614±0.039 0.565±0.018 0.760±0.037

Cut selvage 0.523±0.032 0.734±0.012 0.777±0.036

Fuzzyball 0.518±0.023 0.534±0.058 0.701±0.093

Nep 0.733±0.017 0.707±0.059 0.750±0.038

Weft crack 0.510±0.058 0.544±0.183 0.717±0.072

Mean 0.557±0.014 0.632±0.023 0.733±0.009

E
L

PV

Mono 0.554±0.063 0.557±0.010 0.731±0.021

Poly 0.621±0.006 0.770±0.032 0.800±0.064

Mean 0.588±0.021 0.663±0.015 0.766±0.029

M
as

tc
am

Bedrock 0.474±0.038 0.419±0.025 0.658±0.021

Broken-rock 0.497±0.054 0.687±0.015 0.649±0.047

Drill-hole 0.494±0.013 0.651±0.035 0.725±0.005

Drt 0.586±0.012 0.705±0.043 0.760±0.033

Dump-pile 0.565±0.046 0.697±0.022 0.748±0.066

Float 0.408±0.022 0.635±0.073 0.744±0.073

Meteorite 0.489±0.010 0.551±0.018 0.716±0.004

Scuff 0.502±0.010 0.502±0.040 0.636±0.086

Veins 0.542±0.017 0.577±0.013 0.620±0.036

Mean 0.506±0.009 0.603±0.016 0.695±0.004

H
yp

er
-K

va
si

r Barretts 0.672±0.017 0.679±0.009 0.824±0.006

B.-short-seg 0.666±0.012 0.608±0.064 0.835±0.021

Esophagitis-a 0.619±0.027 0.665±0.045 0.881±0.035

E.-b-d 0.564±0.006 0.480±0.043 0.837±0.009

Mean 0.630±0.009 0.608±0.014 0.844±0.009

C.3. Cross-domain Anomaly Detection

An interesting extension area of open-set anomaly detec-

tion is cross-domain anomaly detection, aiming at training

detection models on a source domain to detect anomalies

on datasets from a target domain different from the source

domain. To demonstrate potential of our method in such set-

ting, we report cross-domain AD results of our model DRA

on all five texture anomaly datasets in MVTec AD in Tab. 5.

DRA is trained on one of five datasets (source domain) and

in fine-tuned with 10 epochs on the other four datasets (tar-

get domains) using normal samples only. The results show

that the domain-adapted DRA significantly outperforms the

SOTA unsupervised method KDAD that is directly trained

on the target domain. This demonstrates some promising

open-domain performance of DRA.

Table 5. AUC results of domain-adapted DRA and unsupervised

method KDAD in texture datasets. The top row is the source do-

main and the left column is the target domain.

carpet grid leather tile wood KDAD

carpet - 0.833 0.921 0.930 0.917 0.774

grid 0.983 - 0.924 0.940 0.916 0.749

leather 0.988 0.998 - 0.994 1.000 0.948

tile 0.917 0.971 0.958 - 0.955 0.911

wood 0.993 0.985 0.972 0.948 - 0.940

D. Failure Cases
Although DRA shows competitive results on most

datasets, it still fails on individual datasets; the most no-

table is the toothbrush dataset. After in-depth research and

analysis of the results, we believe the failure of the tooth-

brush dataset is mainly due to its small size of normal sam-

ples (60 normal samples, see Tab. 1). Due to the more

complex architecture, DRA often requires a relatively larger

set of normal training samples to learn the disentangled ab-

normalities, while simpler methods like FLOS and SAOE

that perform mainly binary classification do not have this

requirement and work better on this dataset. In practice, we

need to pay attention to the available data size of the target

task, and apply a lightweight network in DRA instead when

facing small-scale tasks.
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