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1. Detail searching settings and searched archi-
tectures

To avoid the computational cost of Hessian matrix, the
first-order DARTS [11] and the first-order approximation of
MAML [3] are employed for searching meta-learners. As
for the inner-learners of ϕ and θ, we use the vanilla SGD
with inner learning rate αinner = 1× e−2 for optimizing ϕ,
while a inner learning rate βinner = 0.1 for training θ. In the
meta-learner of ϕ, an Adam [6] optimizer is employed for
updating, with an initial learning rate αmeta = 1× e−3 and
a weight decay of 3 × 10−4. A similar Adam without weight
decay is applied to training the meta-learner of θ. We choose
M = 5 as the inner update step. The searching is executed
on both Omniglot and Mini-Imagenet under the setting of
5-way, 5-shot. For each dataset, we sample 1200 tasks from
Dmeta−train for training and 600 tasks from Dmeta−test for
evaluation. On Omniglot, we prune the architecture every
three epochs from the fifth epoch, while we do it every five
epoch from ninth epoch in Mini-Imagenet. All search and
adaptation experiments are carried out on NVIDIA RTX
2080TI GPUs. The whole search process requires about 0.6
GPU days on Mini-Imagenet. The searched architectures is
visualized in Fig.1 and Fig.2.

2. Complete experimental comparison
In this section, we make a complete experimental compar-

ison of our methods with the methods utilizing the pretrained
model in Table 1. There are some methods [12, 14, 16] ob-
taining better performance with more complex architectures
and pretrained models. P-MAML [17] tries to learn a good
initialization from ResNet18 through knowledge distillation.
However, the results are not promising. Code is available at
this http URL1.

*Siliang Tang is the corresponding author.
1https://github.com/bansheng/CAML

3. Heatmap of the connection parameters
We illustrate the heatmap of connection parameters when

we do pruning in Fig.3. It is evident that without CAML
(treat connection parameters and network weights as the
same kind of parameters), we will find a sub-optimal archi-
tecture, which contains more convolution layers. Without
progressive connection consolidation, the searched architec-
ture cannot cooperate better with the kept weights in the
supernet than random initialization.

4. 5-Way accuracy results on Omniglot dataset
We illustrate the results of 5-way 1-shot and 5-way 5-shot

on Omniglot dataset in Tab.2. We can observe that CAML++
achieves state-of-the-art performance among existing NAS-
based methods.

5. Dataset splits
In few-shot learning, the dataset is composed by train,

validation and test classes. Under N -way K-shot setting,
we sample N classes, of which each contains K examples
as one task. Tasks sampled from train classes is denoted
Dmeta-train. So as Dmeta-val and Dmeta-test. Each of them is
divided into two subset: support set T s and query set T q.
The former is used for updating the inner-learners, while the
later is for the meta-learners. In our experiments, we split the
Dmeta-train into two part. Dmeta-train-split1 is used for optimizing
the connection parameters; the other is for updating the
network weights.

6. Results on CIFAR-10 and ImageNet
We also perform evaluation of the searched architecture

on Mini-Imagenet on standard NAS benchmarks. The results
are demonstrated in Tab.?? and Tab.??. We can observe
that CAML can achieve comparable performance with less
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Figure 1. Architecture searched in 5-way 5-shot setting of Mini-imagenet.
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Figure 2. Architecture searched in 5-way 5-shot setting of FC100.

parameters on NAS benchmarks.
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Figure 3. Heatmap while we do pruning. (a). We use standard CAML with progressive connection consolidation (PCC). (b). We treat
connection parameters and network weights equally. (c). We only prune the supernet at the end of searching.
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Figure 4. Dataset split
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Method Arch. Params Accuracy (%) Pretrained(K) 1-shot 5-shot

TADAM [12] ResNet12 2039.2 58.5 ± 0.3 76.7 ± 0.3 Y
MTL [14] ResNet12 2039.2 61.2 ± 1.8 75.5 ± 0.8 Y
FEAT [16] ResNet18 11415.5 66.8 82.1 Y

P-MAML [17] 4CONV 32.9 49.0 ± 0.7 - N
MAML (first order) [3] 4CONV 32.9 48.7 ± 1.8 63.1 ± 0.9 N

MAML [3] 4CONV 32.9 48.1 ± 1.8 63.2 ± 0.9 N
Auto-Meta [5] Cell 28.0 49.6 ± 0.2 65.1 ± 0.2 N

Auto-MAML [9] Cell 26.1 51.2 ± 1.8 64.1 ± 1.1 N
Ours Cell 24.2 52.2 ± 0.4 68.1 ± 0.3 N

Table 1. Complete average 5-way classification accuracy on Mini-Imagenet with methods utilizing the pretrained model and other NAS-based
methods.

Method Accuracy (%)
1-shot 5-shot

Siamese nets [7] 97.3 98.4
Matching nets [15] 98.1 98.9

Neural statistician [2] 98.1 99.5
Memory mod. [4] 98.4 99.6

Meta-SGD [8] 99.53 ± 0.26 99.93 ± 0.09

MAML ( [3]) 98.7 ± 0.4 99.9 ± 0.1
MAML++ ( [1]) 99.47 99.93
Auto-Meta ( [5]) 97.44 ± 0.07 -

Auto-MAML ( [9]) 98.95 ± 0.38 99.91 ± 0.09

Ours 99.31 ± 0.07 99.93 ± 0.03

Table 2. Average 5-way classification accuracy in percent with 95% confidence interval on Omniglot.

Method Test Error Params Search Cost
(%) (M) (GPU days)

Random search baseline + cutout 3.29 ± 0.15 3.2 -
NASNet-A + cutout [18] 2.65 3.3 180

AmoebaNet-A + cutout [13] 3.34 3.2 3150
PNAS [10] 3.41 ± 0.09 3.2 225

DARTS (first order) [11] 3.00 ± 0.14 3.3 1.5
DARTS (second order) [11] 2.76 ± 0.09 3.37 4

Ours + cutout 3.05 ± 0.14 2.83 0.5

Table 3. Comparison with state-of-the-art NAS methods on CIFAR-10.



Method Test Error(%) Params Search Cost

top-1 top-5 (M) (GPU days)

NASNet-A [18] 26.0 8.4 5.3 1800
NASNet-B [18] 27.2 8.7 5.3 1800
NASNet-C [18] 27.5 9.0 4.9 1800

AmoebaNet-A [13] 25.5 8.0 5.1 3150
AmoebaNet-B [13] 27.2 8.7 5.3 3150
AmoebaNet-C [13] 27.5 9.0 4.9 3150

PNAS [10] 25.8 8.1 5.1 ∼ 255
DARTS [11] 26.9 9.0 4.9 4

Ours 27.3 9.0 4.1 0.5

Table 4. Comparison with state-of-the-art NAS methods on ImageNet.
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