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Abstract

We provide additional materials to supplement our main
submissions. In Section A, we introduce explicit multi-
modal knowledge construction, knowledge graph charac-
teristics, application scenarios in detail, and provide ex-
tracted multimodal knowledge embeddings as off-the-shelf
knowledge features to serve knowledge-based downstream
tasks. Based on the knowledge graph constructed above,
in Section B and C, we respectively introduce how MuKEA
performs multimodal knowledge accumulation and complex
reasoning. Then we compare the model size of MuKEA with
pre-trained models and analyse the influence of multimodal
knowledge base size on inference time respectively in Sec-
tion D and E, which proves that the inference time is not
affected much when varying the knowledge size. In Sec-
tion F, we study the effect of hyper-parameters in model
ensemble corresponding to the knowledge complementary
experiments. At last, in Section H, we introduce the imple-
mentation details about training.

A. Multimodal Knowledge Construction and
Related Applications

In Figure 1, we show a 1-hop sub-graph of our accumu-
lated knowledge triplets centered in top-3 frequent answers
in the OK-VQA train set. To construct multimodal knowl-
edge graph, firstly we store the extracted knowledge triplet
(h, r, t) from training data, where h is the visual region in
the image focused by the question, t is the ground-truth an-
swer, and r is the embedding of implicit relation between
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h and t. We only display the image corresponding to the
h and t to explicitly show the structure of the accumulated
multimodal knowledge graph. Then we merge all the tail
entities with the same answer and merge all the head enti-
ties with the same image, while preserving object regions
in images as shown in the example. After the pre-training
and fine-tuning stages, we accumulate 218,135 multimodal
knowledge triplets for knowledge graph construction.

We summarize the characteristics of our proposed multi-
modal knowledge graph as follows:

• MuKEA extracts different instantiated knowledge for
the same image based on different objects in the im-
age. As shown in the left zoom-in example in Fig-
ure 1, the same image connects both ‘cell phone’ and
‘travel’ since different objects in the same image re-
lated to different knowledge. On the contrary, existing
multimodal knowledge graph [22] is a complement of
general knowledge graphs with entity-referred images.

• The same concept is associated with different visual
knowledge in different scenes. As shown in the right
zoom-in example in Figure 1, ‘airport’ can correspond
to different scenarios, such as airport hall or suitcases
in airport.

• Compared to existing knowledge graphs with pre-
defined types of relations, relation in our proposed
multimodal knowledge graph is extensible and sup-
ports retrieval as well.

• By correlating relevant knowledge, the knowledge
graph is capable of supporting complex reasoning. In
Section C we provide a detailed analysis.

Furthermore, We propose the following potential appli-
cation scenarios for using our multimodal knowledge graph:



travel

vitamins

cell phone

airport

Figure 1. Visualization of the accumulated knowledge graph. Gray lines and blue lines means knowledge accumulated in the VQA 2.0 and
OK-VQA respectively. We show extra zoom-in examples for demonstration.
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Q：What are parked in 
the street ？
A：motorcycle

Q：What material is the 
screen depicted made of？
A：plastic

Figure 2. Knowledge accumulation in the pre-training stage and fine-tuning stages.

• Model-based knowledge search. MuKEA is capable of
retrieving relevant knowledge for multimodal input.

• Knowledge-based vision-language tasks, such as im-
age caption, referring expression comprehension,

vision-language navigation etc.

• Explainable deep learning, especially in the legal,
medical fields.

The checkpoint of MuKEA, extracted multimodal



Q：Where is the train?
A：on tracks

VQA 2.0 samples OK-VQA samples Knowledge after fine-tuning

Q：What evolutionary advantage 
does the neck of a giraffe give it?
A：reach food

Q：What kind of train is this？
A：transportation

Q：What type of animal 
is in the picture ?
A：giraffe reach food

giraffe

transportation

on tracks

Test samples

Q：Which animal in the picture has 
a neck that evolved to reach food?
MuKEA：giraffe✔

Q：What is the function of the 
object on tracks?
MuKEA：transportation✔

Figure 3. Testing samples based on manually constructed questions in zero-shot setting.

knowledge graph, and off-the-shelf knowledge em-
beddings are available at https://github.com/
AndersonStra/MuKEA

B. Analysis of Progress Knowledge Accumula-
tion

From case study in Figure 2, we illustrate how the ba-
sic visual knowledge in VQA 2.0 helps to learn more com-
plex knowledge in OK-VQA: (1) In the first row, benefit-
ing from the question about the appearance of motorcycle,
MuKEA is capable to correlate the visual content of motor-
cycles with the answer in a multi-object scenario. (2) In the
second row, benefiting from the prior knowledge of visual
content with plastic materials, MuKEA has the advantage of
focusing on the key region and obtaining more generalized
representation for objects made of plastic.

C. Zero-shot Analysis of Accumulated Multi-
modal Knowledge

In Figure 3, we show that our model is capable to com-
bine different accumulated knowledge to answer complex
questions in the zero-shot setting. (1) In the test sample of
the first row, we correlate ‘giraffe’ with ‘evolution’ through
the manually constructed question. (2) In the test sample
of the second row, we construct the question to correlate
‘track’ and ‘transportation’. MuKEA performs correct pre-
diction on both questions, which indicates that the accumu-
lated multimodal knowledge can be applied to complex rea-
soning tasks in similar way as existing knowledge graphs.

D. Model Size Analysis
In Table 1, we compare the model size of MuKEA with

pre-trained models [11, 12, 19, 20]. For MuKEA, we set the

Model Parameter
VL-BERT [19] 138.4M
ViLBERT [11] 218.9M
LXMERT [20] 183.5M
KRISP [12] 443.04M
MuKEA 237.2M

Table 1. Comparison of model size.

knowledge base size to the accumulated knowledge from
VQA 2.0 [6] and OK-VQA [13]. The model size increases
as the multimodal knowledge base size increases. Com-
pared to ViLBERT, our model size only increases by 8.36%
with the performance boost by 11.24%. The model size of
KRISP is larger than ours by 86.78%, but its performance is
inferior to ours by 3.69%. It indicates that our improvement
is not from more parameters, but from the model structure.

E. Efficiency Analysis

To verify that MuKEA strikes a good balance between
efficiency and effectiveness , we compare the inference time
and ranking time separately based on different scale of mul-
timodal knowledge base. We test on OK-VQA dataset [13],
which contains 5,046 samples for testing. Knowledge scale
means the number of accumulated multimodal knowledge
triplets. Inference time means the time spent on predict-
ing over the entire test set. Ranking time means the time it
takes to calculate the similarity with all tail entities in the
knowledge base and rank the candidate tail entity.

Table 2 shows that although the ranking time is positively
correlated with the size of knowledge base. It is relatively
faster in the total inference time (less than 0.01%, as shown
in the column of ‘Ranking/Inference’). Since the GPU uses

https://github.com/AndersonStra/MuKEA
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Knowledge Scale Inference Time(s) Ranking Time(s) Ranking/Inference
1000 65.1431 0.0026 0.0040%
10000 65.1459 0.0054 0.0083%
100000 67.3542 0.0064 0.0095%

Table 2. Inference time and ranking time comparison based on different scale of knowledge base on OK-VQA.

Figure 4. Quantitative study of the confidence threshold τt.

threads to process matrix multiplication in parallel, ranking
time is not linearly related to the size of knowledge base.
Our model still has good efficiency based on large-scale
multimodal knowledge base.

F. Effect of Ensemble Hyper-parameters
To verify the robustness of our ensemble model, we re-

port the results of different threshold m for model ensem-
ble in Figure 4. Although we propose a simple method
based on confidence to perform model ensemble, we can
find that the performance of ensemble model remains stable
as the hyper-parameters change in a reasonable range. The
threshold m is set in the range of 0.03 and 0.09, and the
performance of the ensemble models varies in the range of
34.24% to 35.39%, 35.49% to 35.97%, 36.88% to 37.79%
respectively. How to effectively combine MuKEA with
knowledge bases will be the future work.

G. Analysis on VQA 2.0
To prove the generalization ability of our method, we

compare our model with state-of-the-art models on the
VQA 2.0 dataset [6], which requires models to understand
the visible content instead of incorporating external knowl-
edge. All questions in VQA 2.0 are divided into three cat-
egories: Yes/No, Number, and Other. Since our model is
pre-trained on Other type questions for accumulating basic
multimodal knowledge, we only keep Other type questions

Method test-dev test-std

Other Other
MLB [9] 56.34 -
MUTAN [3] 56.50 -
DCN [14] 57.44 56.83
DA-NTN [2] 57.92 -
Counting [25] 58.97
BLOCK [4] 58.51 58.79
UpDn [1] 56.05 56.26
CGN [15] - 56.22
CRA-Net [17] 59.08 59.42
MRA-Net [16] 59.46 59.86
SceneGCN [24] 57.77 57.89
TRN+UpDn [7] 57.44 -
MuRel [5] 57.85 -
VCTREE+HL [21] 59.11 59.34
LENA [8] 59.52 59.87
Ours 57.45 57.84

Table 3. Comparison on Other split of VQA 2.0 dataset.

Q: What colors are the dogs?
A: black, white and yellow

Q: What is this guy holding?
A: frisbee

Figure 5. samples in the VQA 2.0 dataset.

for comparison.
Table 3 shows that our model achieves comparable re-

sults compared with state-of-the-art models. This is mainly
due to the following reasons: (1) VQA 2.0 mainly relies
on visual appearance clues instead of external knowledge.
As shown in Figure 5, the example on the left requires the
model to sense colors in multiple regions, while the ex-
ample on the right requires the model to accurately detect
object in the target region. (2) Existing models takes the
head answers as the candidate answers, we accumulate mul-
timodal knowledge on the whole dataset to ensure the diver-



sity of answers, which is 10 times larger than the candidate
answer set.

H. Implementation Details
For all experiments, we implement our model on top of

LXMERT-based-uncased [23] with 2 NVIDIA V100 GPUs.
We follow [26] to use Faster R-CNN model [18] pre-trained
by the bottom-up model [1] on the Visual Genome dataset
[10]. The dimension of inner feed-forward network layer
before head entity and relation is set to 1024. The dimen-
sions of entity and relation in multimodal knowledge triplet
are set to 300. The parameters in the look-up table are ini-
tialized by uniform distribution.
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