
RepMLPNet: Hierarchical Vision MLP with Re-parameterized Locality
Appendix

(A) Original FC kernel (B) FC kernel with locality injected

Figure 3. FC kernel before and after Locality Injection.

Appendix A: Visualizing Locality Injection
We demonstrate the locality is injected into the FC kernel

by showing the kernel weights.
Specifically, we visualize the weights of FC3 ker-

nel sampled from the 10th RepMLP Block of the 3rd
stage of RepMLPNet-D256 trained on ImageNet. We
reshape the kernel into W̄(s, h, w, 1, h, w), which is
(16, 16, 16, 1, 16, 16), then sample the weights related to the
first input channel and the (7,7) point (marked by a purple
square) on the first output channel, which is W̄1,7,7,1,:,: (in-
dices starting from 1). Then we take the absolute value,
rescale by the minimum value of the whole matrix, and take
the logarithm for the better readability.

As shown in Fig. 3, a point with darker color indicates
the FC considers the corresponding position on the input
channel more related to the output point at (7,7). Obviously,
the original kernel has no locality as the marked point and
the neighbors have no larger values than the others.

Then we merge the parallel conv layers into the kernel
via Locality Injection. The resultant kernel has larger values
around the marked point, suggesting that the model focuses
more on the neighbors, which is expected. Besides, the ker-
nel’s capacity to model the long-range dependencies is not
lost as some points (marked by red dashed rectangles) out-
side the largest conv kernel (3×3 in this case, marked by a
blue square) still have larger values than some points inside.

Appendix B: Details of Semantic Segmentation
We solve the problem of using MLP as the backbone

of a semantic segmentation framework (e.g., UperNet) by

1) the hierarchical design, 2) splitting feature maps into
non-overlapping patches and 3) communications between
patches.

Fig. 4 shows an example of RepMLPNet + UperNet.
1) UperNet requires feauture maps of 4 different levels,

which fits our hierarchical architecture. 2) Since RepMLP
Block works with a fixed input feature map size, we split
the feature maps into non-overlapping patches each with
the required size. 3) The original 2× embedding cannot re-
alize inter-patch communication, so we replace it with 3×3
conv. To reduce the computational cost of 3×3 conv, we de-
compose it into a 1×1 conv for expanding the channels and
a 3×3 stride-2 depth-wise conv for downsampling. Fig. 5
shows the difference between a 2× embedding and a 3×3
conv.

Interestingly, as the input is split into non-overlapping
patches, one may expect that the predictions would be less
accurate at the edges of patches, but we observe no such
phenomenon. Fig. 6 shows that the predictions at the edges
are as good as the internal pixels within patches. This dis-
covery suggests that the dependencies across patches have
been well established and that the representational capacity
of MLP is strong enough for such a dense prediction task.

We hope our results spark further research on the appli-
cation of MLP on downstream tasks.

1



RepMLP Block

(n, C, 128, 256)

…

(8n, C, 64, 64)

(642, 642)

Embed 2×

(8n, C, 64, 64)

(8n, 2C, 32, 32)

(n, C, 128, 256)

RepMLP Block (322, 322)

…

(8n, 2C, 32, 32)

predictions

UperNet

(n, 4C, 32, 64)

(n, 8C, 16, 32)

…

…

(8n, 4C, 16, 16)

(8n, 8C, 8, 8)

(n, 2C, 64, 128)

Figure 4. An example of using RepMLPNet as the backbone of
UperNet. After 4× downsampling on the 512×1024 inputs, the
feature map size becomes 128×256. Then we split the feature
maps into 2×4 non-overlapping patches, each of 64×64, because
the first RepMLP Block maps inputs of 64×64 into 64×64 (i.e.,
the FC kernel is (642,642)). Similarly, the outputs of the four
stages are reshaped back and fed into the UperNet.

2× embed 3×3 conv

(A) Downsample with 2× embed (B) Downsample with 3×3 conv

Figure 5. The difference between 2× embedding and 3×3 conv
is that the latter realizes communications across patch edges. In
this figure, a square denotes a pixel on a feature map and the thick
lines denote the edges of patches. We take the upper left corner of
a patch as an example



Figure 6. The predictions at the edges of patches are no observably worse. We show two images from the Cityscapes validation set as
examples. As the test resolution is 1024×2048, the input to the first RepMLP Block is 256×512 (after the beginning 4× downsampling),
so that the input is split into 32 non-overlapping patches and then fed into RepMLP Blocks. We use red dashed lines to denote the edges of
patches and it is observed that the predictions at the edges are almost as good as the other parts.


