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Appendix

Appendix A: Training Configurations
ImageNet-1K

For training MobileNet V2 models (Sec. 3), we use 8
GPUs, an SGD optimizer with momentum of 0.9, a batch
size of 32 per GPU, input resolution of 224×224, weight
decay of 4 × 10−5, learning rate schedule with 5-epoch
warmup, initial value of 0.1 and cosine annealing for 100
epochs. For the data augmentation, we only use random
cropping and left-right flipping, as a common practice.

For training RepLKNet models (Sec. 4.2),we use 32
GPUs and a batch size of 64 per GPU to train for 120
epochs. The optimizer is AdamW [10] with momentum of
0.9 and weight decay of 0.05. The learning rate setting in-
cludes an initial value of 4 × 10−3, cosine annealing and
10-epoch warm-up. For the data augmentation and regular-
ization, we use RandAugment [4] (“rand-m9-mstd0.5-inc1”
as implemented by timm [15]), label smoothing coefficient
of 0.1, mixup [18] with α = 0.8, CutMix with α = 1.0,
Rand Erasing [19] with probability of 25% and Stochastic
Depth with a drop-path rate of 30%, following the recent
works [1, 8, 9, 12]. The RepLKNet-31B reported in Sec.
4.3 is trained with the same configurations except the epoch
number of 300 and drop-path rate of 50%.

For finetuning the 224×224-trained RepLKNet-31B
with 384×384, we use 32 GPUs, a batch size of 32 per
GPU, initial learning rate of 4 × 10−4, cosine annealing,
1-epoch warm-up, 30 epochs, model EMA (Exponential
Moving Average) with momentum of 10−4, the same Ran-
dAugment as above but no CutMix nor mixup.

ImageNet-22K Pretraining and 1K Finetuning

For pretraining RepLKNet-31B/L on ImageNet-22K, we
use 128 GPUs and a batch size of 32 per GPU to train for
90 epochs with a drop-path rate of 10%. The other config-
urations are the same as the aforementioned ImageNet-1K
pretraining.

Then for finetuning RepLKNet-31B with 224×224, we
use 16 GPUs, a batch size of 32 per GPU, drop-path rate
of 20%, initial learning rate of 4× 10−4, cosine annealing,
model EMA with momentum of 10−4 to finetune for 30
epochs. Note again that we use the same RandAugment as

above but no CutMix nor mixup.
For finetuning RepLKNet-31B/L with 384×384, we use

32 GPUs and a batch size of 16 per GPU, and the drop-path
rate is raised to 30%.

RepLKNet-XL and Semi-supervised Pretraining

We continue to scale up our architecture and train
a ViT-L [6] level model named RepLKNet-XL. We use
B = [2, 2, 18, 2], C = [256, 512, 1024, 2048], K =
[27, 27, 27, 13], and introduce inverted bottleneck with ex-
pansion ratio of 1.5 to each RepLK Block. During pretrain-
ing, we use a private semi-supervised dataset named Meg-
Data73M, which contains 38 million labeled images and 35
million unlabeled ones. Labeled images come from pub-
lic and private classification datasets such as ImageNet-1K,
ImageNet-22K and Places365 [20]. Unlabeled images are
selected from YFCC100M [11]. We design a multi-task la-
bel system according to [7], and utilize soft pseudo labels
which are offline generated by multiple task-specific ViT-
Ls wherever human annotations are unavailable. We pre-
train our model for up to 15 epochs with similar configu-
rations as ImageNet-1K pretraining. We do not use Cut-
Mix or mixup, decrease drop-path rate to 20%, and use a
lower initial learning rate of 1.5 × 10−3 and a total batch
size of 2048. Structural Re-parameterization is omitted be-
cause it only brings less than 0.1% performance gain on
such a large-scale dataset. In other words, we observe that
the inductive bias (re-parameterization with small kernels)
becomes less important as the data become bigger, which is
similar to the discoveries reported by ViT [6].

We finetune on ImageNet-1K with input resolution of
320×320 for 30 epochs following BeiT [1], except for a
higher learning rate of 10−4 and stage-wise learning rate de-
cay of 0.4. Finetuning with a higher resolution of 384×384
brings no further improvements. For downstream tasks, we
use the default training setting except for a drop-path rate of
50% and stage-wise learning rate decay.

Appendix B: Visualizing the ERF
Formally, let I(n × 3 × h × w) be the input image,

M(n × c × h′ × w′) be the final output feature map, we
desire to measure the contributions of every pixel on I to
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Table 10. Quantitative analysis on the ERF with the high-
contribution area ratio r. A larger r suggests a smoother distri-
bution of high-contribution pixels, hence larger ERF.

t = 20% t = 30% t = 50% t = 99%

ResNet-101 0.9% 1.5% 3.2% 22.4%
ResNet-152 1.1% 1.8% 3.9% 34.4%
RepLKNet-13 11.2% 17.1% 30.2% 96.3%
RepLKNet-31 16.3% 24.7% 43.2% 98.6%

the central points of every channel on M, i.e., M:,:,h′/2,w′/2,
which can be simply implemented via taking the derivatives
of M:,:,h′/2,w′/2 to I with the auto-grad mechanism. Con-
cretely, we sum up the central points, take the derivatives to
the input as the pixel-wise contribution scores and remove
the negative parts (denoted by P). Then we aggregate the
entries across all the examples and the three input channels,
and take the logarithm for better visualization. Formally,
the aggregated contribution score matrix A(h×w) is given
by

P = max(
∂(
∑n

i

∑c
j Mi,j,h′/2,w′/2)

∂I
, 0) , (1)

A = log10(

n∑
i

3∑
j

Pi,j,:,: + 1) . (2)

Then we respectively rescale A of each model to [0, 1]
via dividing the maximum entry for the comparability
across models.

Table 10 presents a quantitative analysis, where we re-
port the high-contribution area ratio r of a minimum rectan-
gle that covers the contribution scores over a given threshold
t. For examples, 20% of the pixel contributions (A values)
of ResNet-101 reside within a 103×103 area at the center,
so that the area ratio is (103/1024)2 = 1.0% with t = 20%.
We make several intriguing observations. 1) While be-
ing significantly deeper, ResNets have much smaller ERFs
than RepLKNets. For example, over 99% of the contribu-
tion scores of ResNet-101 reside within a small area which
takes up only 23.4% of the total area, while such area ra-
tio of RepLKNet-31 is 98.6%, which means most of pixels
considerably contribute to the final predictions. 2) Adding
more layers to ResNet-101 does not effectively enlarge the
ERF, while scaling up the kernels improves the ERF with
marginal computational costs.

Appendix C: Large-Kernel Models have High
Shape Bias

A recent work [13] reported that vision transformers are
more similar to the human vision systems in that they make
predictions more based on the overall shapes of objects,
while CNNs focus more on the local textures. We fol-
low its methodology and use its toolbox [2] to obtain the
shape bias (e.g., the fraction of predictions made based on
the shapes, rather than the textures) of RepLKNet-31B and
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Figure 5. Shape bias of RepLKNet, Swin, and ResNet-152 pre-
trained on ImageNet-1K or 22K. The scatters represent the shape
bias of 16 categories, and the vertical lines are the averages across
categories (note RepLKNet-3 and ResNet-152 are very close).

Swin-B pretrained on ImageNet-1K or 22K, together two
small-kernel baselines RepLKNet-3 and ResNet-152. Fig. 5
shows that RepLKNet has higher shape bias than Swin.
Considering RepLKNet and Swin have similar overall ar-
chitectures, we reckon shape bias is closely related to the
Effective Receptive Field rather than the concrete formula-
tion of self-attention (i.e., the query-key-value design). This
also explains 1) the high shape bias of ViTs [6] reported
by [13] (since ViTs employ global attention), 2) the low
shape bias of 1K-pretrained Swin (attention within local
windows), and 3) the shape bias of the small-kernel base-
line RepLKNet-3, which is very close to ResNet-152 (both
models are composed of 3× 3 convolutions).

Appendix D: ConvNeXt + Very Large Kernels

We use the recently proposed ConvNeXt [9] as the
benchmark architecture to evaluate large kernel as a generic
design element. We simply replace the 7×7 convolu-
tions in ConvNeXt [9] by kernels as large as 31×31.
The training configurations on ImageNet (120 epochs)
and ADE20K (80K iterations) are identical to the results
shown in Sec. 4.2. Table. 11 shows that though the orig-
inal kernels are already 7×7, further increasing the ker-
nel sizes still brings significant improvements, especially
on the downstream task: with kernels as large as 31×31,
ConvNeXt-Tiny outperforms the original ConvNeXt-Small,
and the large-kernel ConvNeXt-Small outperforms the orig-
inal ConvNeXt-Base. Again, such phenomena demonstrate

2



Table 11. ConvNeXt with different kernel sizes. The models are pretrained on ImageNet-1K in 120 epochs with 224×224 input and
finetuned on ADE20K with UperNet in 80K iterations. On ADE20K, we test the single-scale mIoU, and compute the FLOPs with input of
2048×512, following Swin.

ImageNet ADE20K
Kernel size Architecture Top-1 Params FLOPs mIoU Params FLOPs
7-7-7-7 ConvNeXt-Tiny 81.0 29M 4.5G 44.6 60M 939G
7-7-7-7 ConvNeXt-Small 82.1 50M 8.7G 45.9 82M 1027G
7-7-7-7 ConvNeXt-Base 82.8 89M 15.4G 47.2 122M 1170G
31-29-27-13 ConvNeXt-Tiny 81.6 32M 6.1G 46.2 64M 973G
31-29-27-13 ConvNeXt-Small 82.5 58M 11.3G 48.2 90M 1081G

Table 12. MobileNet V2 with all regular DW 3×3 layers replaced
by 3×3 dilated layers.

Max RF Kernel size Dilation ImageNet acc Params FLOPs
9 9×9 - 72.67 4.0M 319M
9 3×3 4 57.23 3.5M 300M
13 13×13 - 72.53 4.6M 361M
13 3×3 6 51.21 3.5M 300M

that kernel size is an important scaling dimension.

Appendix E: Dense Convolutions vs. Dilated
Convolutions

As another alternative to implement large convolutions,
dilated convolution [3, 17] is a common component to in-
crease the receptive field (RF). However, Table 12 shows
though a depth-wise dilated convolution may have the same
maximum RF as a depth-wise dense convolution, its repre-
sentational capacity is much lower, which is expected be-
cause it is mathematically equivalent to a sparse large con-
volution. Literature (e.g., [14, 16]) further suggests that di-
lated convolutions may suffer from gridding problem. We
reckon the drawbacks of dilated convolutions could be over-
come by mixture of convolutions with different dilations,
which will be investigated in the future.

Appendix F: Visualizing the Kernel Weights
with Small-Kernel Re-parameterization

We visualize the weights of the re-parameterized 13×13
kernels. Specifically, we investigate into the MobileNet V2
models both with and without 3×3 re-parameterization. As
Shown in Sec. 3 (Guideline 3) , the ImageNet scores are
73.24% and 72.53%, respectively. We use the first stride-
1 13×13 conv in the last stage (i.e., the stage with input
resolution of 7×7) as the representative, and aggregate (take
the absolute value and sum up across channels) the resultant
kernel into a 13×13 matrix, and respectively rescale to [0, 1]
for the comparability. For the model with 3×3 re-param, we
show both the original 13×13 kernel (only after BN fusion)
and the result after re-param (i.e., adding the 3×3 kernel
onto the central part of 13×13). For the model without re-
param, we also fuse the BN for the fair comparison.

We observe that every aggregated kernel shows a similar
pattern: the central point has the largest magnitude; gen-
erally, points closer to the center have larger values; and
the “skeleton” parameters (the 13×1 and 1×13 criss-cross
parts) are relatively larger, which is consistent with the dis-
covery reported by ACNet [5]. But the kernel with 3×3
re-param differs in that the central 3×3 part of the resultant
kernel is further enhanced, which is found to improve the
performance.
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Figure 6. Parameters of 13×13 kernels in MobileNet V2 aggregated into 13×13 matrices.
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