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In this supplementary material, we first discuss the poten-
tial negative social impacts of our research. Then, we present
another user study for the churches domain. This survey and
the previous one presented in the main paper for human faces
show that our method works well for both domains under
human assessment. Moreover, we present the difference
map visualizations to analyze the image residuals from our
Phase II update. We also include additional dataset and im-
plementation details for reproducibility. Finally, we provide
extensive visual examples for further qualitative evaluation.

1. Discussion on Negative Societal Impacts

Besides some fancy and potential applications that could
be commercial in the future to create numerous profits and
have a large impact on society, our method can not avoid
being used in ways harmful to society in some cases. For
example, an attacker can use our model to create deep fake
examples from reconstructing and editing a real photograph
of a human face. Our inversion method can potentially yield
realistic results, making them indistinguishable from real
faces. Our method might also lead to the caveat of creating
deep fake videos at real time since our neural network per-
forms very fast predictions. Despite such, we believe that our
method could contribute positively to the society via inspir-
ing and advocating the development of more sophisticated
detection methods to mitigate deep fakes.

2. User Study
2.1. The Churches Domain

In the main paper, we have shown the user study results
for the human faces domain. Here, we also conduct an
additional user study on the churches domain to verify the ef-
fectiveness of our method on this domain. The results of the
user study for churches domain can be found in Figure 1. As
can be seen, our method outperforms significantly ede [10]
and ReStyle [2] with a very large gap. Our method is favored
in 84.3% and 77.2% of the reconstruction and editing tests,
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Figure 1. User study results for Churches domain. We reported
the percentage of times testers rank the method at 1°* (best), 2"¢,
and 3"¢ (worst) based on two criteria, which are reconstruction and
editing quality. As can be seen, our method outperforms e4e and
ReStyle significantly.

respectively, which is about 5.3 and 3.3 better than ede
and ReStyle combined for each test.

2.2. Details of User Study

We now turn to describe the detailed setup of our user
survey. Particularly, there are two separate tests, which are
reconstruction and editability tests. For each test, we ask
each human subject to rank the image from the scale of 1%¢
(best) to 3" (worst) based on some criteria, which depend
on the corresponding domain and would be described below.
Human faces. We first choose 30 images from the images
of the CelebA-HQ [4, 6] test set and the collected high-
resolution images from the Internet as the input images.
Then, we use the candidate methods to reconstruct and edit
these input images. Each question is a record of input image
and the reconstructed/edited images by the candidate meth-
ods. For reconstruction, we ask each participant to rank the
images on: (1) the ability to preserve identity; (2) the abil-
ity to reconstruct the details such as background, makeup,
shadow, lipstick, hat, etc; (3) image aesthetics. For editabil-
ity, we request the participant to rank: (1) the level of identity
preservation compared to the input image; (2) the ability to



preserve the details (except for the editing attribute) of the
original photo in the edited image — the more details the
better. We recruited a total of 38 and 30 participants to cast
1, 140 and 900 votes for the reconstruction and editing tests,
respectively.

Churches. We choose randomly 30 images from the test
set of LSUN Churches [ 1] dataset as the input images.
Then, we use the candidate methods to reconstruct and edit
these input images. Each question is a record of the input
image and the reconstructed/edited images by the candidate
methods. For reconstruction, we ask each human subject
to rank on: (1) the ability to restore as much as details
of the input image in the reconstructed image; (2) image
aesthetics. For editability, we request the participant to rank
on the ability to preserve as much detail of the input image
as possible (except for the editing attribute). We recruited
35 and 26 participants, which results in 1, 050 and 780 votes
for the reconstruction and editing tests, respectively.

3. Visualization and Analysis
3.1. Distribution of the predicted residual weights

In the main paper, we have shown an analysis on the
distribution of residual weights predicted by the hypernet-
works in Phase II for the human facial domain. Here, we
also provide an equivalent analysis for the churches domain.
Figure 2 presents this visualization. As can be seen, the
churches domain results are not completely the same as
those for the human facial domain. The observation for
human faces still preserved in the churches domain is that
the main conv weights contribute significantly compared to
weights of forgb block. The difference here is that the resid-
ual weight updates occur at most layers in churches instead
of concentrating at the last layer as in human faces. This
aligns with the fact that the church domain is more diverse
and challenging to reconstruct than the human facial domain,
thus requiring updates at both low- and high-frequency sig-
nals. For face images, the initial images after Phase I are
already very close to the inputs, and Phase II focuses on
restoring the fined-grained details.

3.2. Difference maps

We also conduct an experiment to visualize the difference
between the initial image from Phase I and the final image
from both phases to analysis which regions change most in
the refinement process of Phase II. Specifically, given the
input image x(), the Phase I’s output image :zﬁ,f), and the
final reconstructed image 2 where i € {1..N}, N is the
number of test images, we compute the difference map m (")
by subtracting two reconstructed images and take absolute
values, which means m(?) = |£() — 70 |. We then compute
the mean difference map m by averaging all difference maps
{m® m®  m)} Next, we convert 7 from the RGB

N

Mean Absolute Changed Weights
-

)

b4.convl
b4.torgh
b8.conv0
b8.convl
b8.torgb
b16.conv0
b16.convl
b16.torgh
b32.conv0
b32.convl
b32.torgb
b64.conv0
b64.convl
b64.torgh
b128.conv0
b128.convl
b128.torgb
b256.conv0
b256.convl
b256.torgb

Layer Name
Figure 2. Visualizing the statistic of residual weights predicted by
the hypernetworks on the churches domain. Compared to faces, our
hypernetworks provides more uniform weight updates across layers,
which means updates are required on both low- and high-frequency
signals of the images.
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Figure 3. Heat-map visualization of the difference between the
output images in Phase I and the final images after both phases of
our method, averaged over images from the test set. For faces, large
changes are focused around eye and hair. For churches, low changes
are in the sky region. Blue indicates a small change, whereas red
denotes a large change.

image to the grayscale image and visualize it as the heat
map. In this experiment, we use all 2, 824 images from the
CelebA-HQ test set and all 300 images from LSUN Church
test set to analyze for human faces and churches domains,
respectively. Figure 3 presents the results. As can be seen,
for human faces, the heat map in Figure 3-a reveals that
our method focuses mainly on refining the regions having
many fine-grained details such as hair, cheek, beard, eye in
Phase II. For the churches domain, since the images from
this domain are not aligned and very diverse in terms of
structures, its heat map in Figure 3-b appears more random.
However, we can see that the top left region of the map does
not change much, which is often the sky that is already well
reconstructed from Phase I.

To gain better insights on individual cases, we also pro-
vide heat-maps for each image in Figure 4 and 5.



Figure 4. Visualizing the effectiveness of our phase II in bringing
back the information of input image missed in the initial image on
the human facial domain. We also include the difference map for

reference which region change most in the image after phase II.
Blue indicates a small change, while red denotes a large change.

Best viewed in zoom.

Figure 5. Visualizing the effectiveness of our phase II in bringing
back the information of input image missed in the initial image
on the churches domain. We also include the difference map for
reference which region change most in the image after phase II.
Blue indicates a small change, while red denotes a large change.
Best viewed in zoom.

4. Additional Experimental Details
4.1. Datasets

In this section, we provide more details about the datasets
we employ in conducting our experiments.
Human faces. We use 70, 000 images from the FFHQ [5]
dataset as our training set and 2, 824 images from the official
test set of CelebA-HQ [4, 6] as our test set. These datasets
contain high-quality real-world face images at resolution
1024x1024. All faces are aligned to the center of the images.
Churches. We choose the Churches domain to test our
method on images of natural outdoor scenes. These images
are more diverse than human faces and thus considered more
challenging. We use LSUN Church [11] in this task. The
resolution of images is 256 x 256. We use 126, 227 and 300
images from the official train/test split of LSUN Church for

training and testing, respectively.

4.2. Detailed architecture of £, and E5 encoders.

As mentioned previously in the main paper, for F; and
E5 encoders, we adopt the design of [7, 10] as the main
backbone with some modifications since the superior perfor-
mance of the original network. For F; encoder, we utilize
the WV encoder of these networks without modifications.
For Es encoder, since our network outputs the intermediate
features having the similar size with the output of the W
encoder of [7, 10]. Therefore we also leverage this design
for F5 with some modifications. Particularly, the architec-
ture of this encoder is the FPN-based design [7]. We modify
the map2style block to output the feature tensor with the
dimension of 512 x 8 x 8 instead of a 512 vector of original
backbone. Figure 6 gives the network design of FPN-based
network and our modifications.
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Figure 6. The FPN-based encoder network proposed by Richard-
son et al. [7], which has been used popularly by many previous
encoder-based GAN inversion works, and our modifications in
map2style block to output 512 x 8 x 8 tensor instead of 512 vector
as the original backbone. Diagram notation: conv2d(in_channels,
out_channels, kernel_size, stride, padding). For simplicity, we omit
the LeakyReLU activations after each conv2d layer in the figure.

5. Additional Qualitative Results

We now turn to provide more qualitative examples on
reconstruction, editability and also interpolation to further



demonstrate the superiority of our method. The short de-
scriptions for the figures are shown below.

Figure 7 compares the reconstruction results of our
method with existing state-of-the-art inversion tech-
niques, including encoder-based [2, 7, 10], optimization-
based [1] and two-stage methods [8] for the human fa-
cial domain on the input images taken from the CelebA-
HQ [4, 6] test set.

Figure 8 and 9 compare the editing results of our method
with the existing state-of-the-art encoder-based [2, 7, 10]
inversion techniques for the human facial domain on the
input images taken from the CelebA-HQ [4, 6] test set.

Figure 10 compares the editing results of our method
with PTI [8] and SG2 W™ [1] for the human facial
domain on the input images taken from the CelebA-
HQ [4, 6] test set.

Figure 11 compares the reconstruction results of our
method with existing state-of-the-art inversion tech-
niques, including encoder-based [2, 7, 10], optimization-
based [!] and two-stage methods [8] for the churches
domain on the input images taken from the LSUN
Church [11] test set.

Figure 12 compares the editing results of our method
with the existing state-of-the-art encoder-based [2, 7, 10]
inversion techniques for the churches domain on the input
images taken from the LSUN Church [11] test set.

Figure 13 compares the editing results of our method
with PTI [8] and SG2 W [1] on the churches domain
on the images taken from the LSUN Church [1 1] test set.

Figure 14, and 15 show additional results for real-world
image interpolation of our proposed pipeline, which
interpolates both latent codes and generator weights com-
pared to the common-used pipeline, which interpolates
latent codes only.
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Figure 7. More visual examples shown the reconstruction comparison of our method with other encodered-based approaches: pSp [7],
ede [10], ReStyle [2]; optimization-based methods: SG2 WY [11; two-stage works: PTI [8] on the human facial domain. The input images
are taken from the CelebA-HQ [4, 6] test set. Best viewed in zoom.
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Figure 8. More visual examples shown the editability comparison of our method with the existing encodered-based approaches, which are
ede [10], ReStyle [2] on the human facial domain. The input images are taken from the CelebA-HQ [4, 6] test set. The smile direction is
obtained from InterFaceGAN [9], whereas other directions are borrowed from GANSpace [3]. Best viewed in zoom.
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Figure 9. More visual examples shown the editability comparison of our method with the existing encodered-based approaches, which are
ede [10], ReStyle [2] on the human facial domain. The input images are taken from the CelebA-HQ [4, 6] test set. The rotation and smile
directions are obtained from InterFaceGAN [9], whereas other directions are borrowed from GANSpace [3]. Best viewed in zoom.
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Figure 10. More visual examples shown the editability comparison of our method compared to PTI [8] and SG2 W™ [1] on the human
facial domain. Recall that such two methods require the optimization process and/or generator fine-tuning in the inference time, therefore,
they run very slow. The input images are taken from the CelebA-HQ [4, 6] test set. The rotation and smile directions are obtained from
InterFaceGAN [9], whereas other directions are borrowed from GANSpace [3]. Best viewed in zoom.



Figure 11. More visual examples shown the reconstruction comparison of our method with other encodered-based approaches: pSp [7],
ede [10], ReStyle [2]; optimization-based methods: SG2 W™ [1]; two-stage works: PTI [8] on the churches domain. The input images are
taken from the LSUN Church [ 1] test set. Best viewed in zoom.
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Figure 12. More visual examples shown the editability comparison of our method with the existing encodered-based approaches, which
are ede [10], ReStyle [2] on the churches domain. The input images are taken from the LSUN Church [11] test set. The editing directions
are obtained from GANSpace [3]. Best viewed in zoom.
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Figure 13. More visual examples shown the editability comparison of our method compared to PTI [8] and SG2 W [1] on the churches
domain. Recall that such two methods require the optimization process and/or generator fine-tuning in the inference time, therefore, they run
very slow. The input images are taken from the LSUN Church [11] test set. The editing directions are obtained from GANSpace [3]. Best
viewed in zoom.
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Figure 14. The additional results for real-world image interpolation of our method compared to the existing state-of-the-art encoder-based
inversion techniques. The input images are taken from the Internet. Best viewed in zoom.
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Figure 15. The additional results for real-world image interpolation of our method compared to the existing state-of-the-art encoder-based
inversion techniques. The input images are taken from the Internet. Best viewed in zoom.
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