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1. Computing Principle Direction e

We describe the procedure to compute the principle
direction e that are used in Equation (7) in the main
manuscript. For the jth image, we find the weight bji us-
ing the hard assignment by restricting bji “ t0, 1u where
bji is one if ri is closest to g, and zero otherwise. After
specifying a cluster of egocentric images based on the ref-
erence direction, we find the surface normal distribution per
cluster:
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ÿ

jPCi

histpnjq, (1)

where histpnjq is the angular histogram of the surface nor-
mals of the jth training image. nj is the 3 ˆ n matrix that
each column presents a pixel’s surface normal direction and
n is the total pixel in image Ij . The optimal rotation for
the jth image towards the ith reference direction, R˚

ji, is
the one that maximizes the similarity in the surface normal
distributions:

R˚
ji “ argmin

Rji

DKL phistpRjinjq||Qiq , (2)

where Rjinj is the rotated surface normals, and DKL is KL
divergence [2]. We optimize Equation (2) with an initial
guess of Rji computed by the gravity and reference direc-
tions:

Rji “ I3 ` 2rig
T
j ´

pri ` gjq pri ` gjq
T

1 ` rTi gj
, (3)

where I3 is the 3 ˆ 3 identity matrix.
This optimal rotation can be parametrized by the princi-

ple direction ej [1], where e can be computed by:

ej “ R˚
jigj . (4)

We use the optimal principle direction as a ground truth to
learn the multimodal spatial rectifier.

Figure 1. EDINA dataset recording setup.

2. Hardware setup
The participants were asked to wear an Azure-Kinect-

mounted helmet while performing diverse daily indoor ac-
tivities. The sensor was also connected to a laptop which
reads and stores the raw data from the Azure Kinect device
using the provided SDK. Figure 1 demonstrates the mount-
ing configuration in which the camera is oriented to approx-
imately 45˝ downward so that the captured interactions are
within the field-of-view of the camera.

3. More Results
Baselines In addition to the datasets mentioned in the
main manuscript, we also perform experiments on THU-
READ [3]. THU-READ is an egocentric RGB-D dataset
consisting of 1,920 video sequences in several differ-
ent hand-action categories for a total of 171,474 RGB-D
frames. We follow THU-READ’s official 3/1 split for train-
ing/testing.
Evaluation Metrics We assess the accuracy of the pre-
dicted depths using multiple standard metrics, including:
(a) mean absolute relative error (Abs. Rel), (b) mean square
relative error (Sq. Rel), (c) logarithmic root mean square
error (log-RMSE), (f) root mean square error (RMSE), and
(g) the percentage of the estimated depths d̂ for which
maxp d̂

d˚ ,
d˚

d̂
q ă δ, where d˚ is the ground-truth depth and

δ “ 1.25, 1.252, 1.253.
Depth Prediction Table 1 summarizes the performance of
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Testing Method Abs. RelÓ Sq. RelÓ log-RMSEÓ RMSE Ó 1.25Ò 1.252 Ò 1.253 Ò

PFPN (THU-READ) 0.405 0.210 1.044 0.431 28.71 45.72 61.97
PFPN (FPHA) 0.314 0.167 0.500 0.378 42.82 66.48 78.98
PFPN (ScanNet) 0.536 0.292 0.450 0.410 28.50 63.31 84.60
MiDaS (MIX6): 0.194 0.079 0.267 0.247 68.20 83.96 93.14
DPT (MIX6): 0.195 0.073 0.256 0.234 66.95 86.07 94.39
PFPN (EDINA) 0.173 0.052 0.210 0.181 78.81 92.97 97.06

EDINA PFPN 0.161 0.044 0.197 0.168 81.03 94.16 97.68
PFPN+SR(e2) 1.573 3.145 0.938 1.155 5.58 19.75 42.32
PFPN+SR(e3) 0.381 0.333 0.475 0.416 51.75 73.37 84.62
PFPN+MSR (Ours) 0.145 (-9.7%) 0.041 (-8.5%) 0.182 (-7.7%) 0.155 (-7.9%) 84.06 94.54 97.87
PFPN (THU-READ) 0.439 0.150 4.629 0.279 32.03 54.92 70.76
PFPN (ScanNet) 1.252 0.893 0.788 0.580 10.36 28.07 48.87
PFPN (EDINA) 1.229 4.114 0.802 1.483 25.98 46.38 62.70

FPHA PFPN 0.737 0.457 0.549 0.397 32.60 57.61 75.14
PFPN+MSR (Ours) 0.657 (-10.8%) 0.369 (-19.2%) 0.508 (-7.3%) 0.337 (-15.2%) 37.70 62.50 78.30
PFPN (FPHA) 0.119 0.023 0.139 0.075 91.29 97.31 98.75

Table 1. We compare the performance of depth prediction of our method (MSR) with baselines on EDINA and FPHA testing data. The
: indicates methods that predict scale-ambiguous depth and thus require a scale correction step. The numbers in the parenthesis show the
percentage of the reduction in error metrics of PFPN+MSR (Ours) with respect to the baseline PFPN, where the green highlight denote
this improvement in percentage.

Figure 2. PFPN+SR(e2) error map w.r.t. different roll and pitch
angles (on a subset of test images).

our multimodal spatial rectifier and the effectiveness of our
EDINA dataset. A baseline network with our multimodal
spatial rectifier (PFPN+MSR) outperforms other baselines
on nearly all evaluation metrics, not only on our EDINA
dataset but also on FPHA dataset. We conjecture that ED-
INA dataset that comprises a large variation in pitch an-
gles can be overfitted by a large capacity network such as
PFPN. In addition, due to this substantial roll and pitch an-
gles, it results in significant performance degradation for
SR(e2) or SR(e3) (which motivates our multimodal spatial
rectifier). This is also shown in the performance SR(e2)
on depth RMSE with respect to camera roll and pitch an-
gle in Figure 2. Furthermore, the FPHA dataset is taken
from a shoulder mounted camera, imposing more roll mo-
tion on the image, thus it causes a strong degradation for
PFPN trained on ScanNet+EDINA datasets. We conclude
that our MSR module is highly beneficial for learning ego-
centric scene geometry.

A baseline PFPN trained on THU-READ, FPHA, and

ScanNet performs poorly on EDINA. In addition, the base-
line PFPN trained on THU-READ tends to generalize rel-
atively well on FPHA because both datasets include hand-
object interactions. On the other hand, the network trained
only on EDINA performs strongly on its own test set while
lacking generalizability towards to other dataset such as
FPHA. Our baseline PFPN trained on ScanNet and ED-
INA outperforms PFPN trained on other datasets on FPHA.
This indicates that learning can greatly benefit from a large
amount of high quality ground truth geometry from Scan-
Net, together with our EDINA.
Comparison of the clustered reference distributions of
different datasets. We show in Figure 3 the comparison
between ScanNet+EDINA and FPHA surface normal dis-
tribution. Note that FPHA has stronger distribution on the
tilted modes due to the shoulder mounted camera, which
shows the strong generalization capacity of our proposed
MSR.

Figure 3. ScanNet+EDINA vs FPHA surface normal distribution.

Qualitative Comparison We show the qualitative compar-
ison on depths and surface normals estimation with and
without the multimodal spatial rectifier on Figure 4 and Fig-



ure 5, respectively.
Qualitative Results on EPIC-KITCHENS Figure 6 illus-
trates the depths, surface normals and gravity prediction on
the EPIC-KITCHENS dataset using our multimodal spatial
rectifier trained on the ScanNet and our EDINA dataset.
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Figure 4. Qualitative results for depth prediction on EDINA dataset. From left to right: (1) RGB image, (2) ground truth depths, (3) depths
prediction using PFPN+MSR and its error (the hotter the higher error), and (4) depths prediction using PFPN and its error.



Figure 5. Qualitative results for surface normal prediction on EDINA dataset. From left to right: (1) RGB image, (2) ground truth surface
normals, (3) surface normals prediction using PFPN+MSR and its error (the hotter the higher error), and (4) surface normals prediction
using PFPN and its error.



Figure 6. Qualitative results for depth, surface normal, and gravity prediction on EPIC-KITCHENS dataset. In each column, from left to
right: (1) RGB image, (2) depth prediction using PFPN+MSR, (3) surface normals prediction using PFPN+MSR, and (4) gravity prediction.


