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A. Proof of claim 1
By construction, f(I∗) = 0. Given an infeasible basis

B, by monotonicity

1 = f(B) ≤ f(I∗ ∪ B) = 1. (1)

Thus, B must contain a point not in I∗.

B. Proof of claim 2
Recall that an independent set of a hypergraph is a subset

of the vertices where none of the members of the subset
form a hyperedge [2, Chapter 2].

Given f(I) = 0, we have that f(A) = 0 for all A ⊆ I
due to monotonicity. Hence, the vertices in I do not form
hyperedges, i.e., I is an independent set.

Let I be an independent set of H , and Ω = {S1,S2, . . . }
be all δ-subsets of C. By construction,

g(Sℓ) ≤ ϵ ∀Sℓ ∈ Ω (2)

since there are no hyperedges in I. Let S∗ ∈ Ω such that

g(Sℓ) ≤ g(S∗) ≤ ϵ ∀Sℓ ∈ Ω. (3)

Suppose g(I) > ϵ: from [1, 6], there is a support set S̄—
which is also a basis and hence a δ-subset—of I such that

g(I) = g(S̄), (4)

which implies that S̄ ∈ Ω but S̄ ≠ S∗, and

g(S̄) > ϵ ≥ g(S∗), (5)

which contradicts (3). Thus, we must have that g(I) ≤ ϵ,
i.e., I is a consensus set.

C. Reformulating QUBO for D-Wave solvers
Recall the QUBO (19)

Qλ(A) = min
v∈{0,1}N+δ′M

[
vT 1

]
(J+ λHT

AHA)
[
vT 1

]T
Let Q = J + λHT

AHA, and denote qij is the element in
ith-row and jth-column of Q

D-Wave solvers accept Q as a upper-triangular matrix,
which can be obtained by following procedure

• For every i and j, if j > i, then qij = qij + qji

• For every i and j, if j < i, then qij = 0

We attain the new QUBO with upper-triangular Q

Qλ(A) = min
v∈{0,1}N+δ′M

[
vT 1

]
Q

[
vT 1

]T
which, however, still cannot be applied to D-Wave solvers
since the variables are in the form

[
vT 1

]
. However, this

formulation can be rewritten using a simple derivation.
Suppose

v =
[
v1 v2 v3

]
(6)

Q =


q11 q12 q13 q14
0 q22 q23 q24
0 0 q33 q34
0 0 0 q44

 . (7)

We then take the last column of Q except the last element
q44, which yields q =

[
q14 q24 q34

]T
. Next, we add q

to the diagonal of Q

Q′ =

q11 + q14 q12 q13
0 q22 + q24 q23
0 0 q33 + q34

 . (8)

Since v is a binary vector, i.e., v2i = vi, we can obtain

[
vT 1

]
Q

[
vT 1

]T
= vTQ′v + q44. (9)

Therefore, we get the new QUBO

Qλ(A) = min
v∈{0,1}N+δ′M

vTQ′v + constant, (10)

which can be directly applied to D-Wave solvers.

1



D. Spectral gap
Computation of spectral gap. Recall matrix Q′ of
QUBO (10). For simplicity, let

n = N + δ′M (11)

thus Q′ is an upper-triangular matrix of the size n×n, and
denote q′i,j is the element in ith-row and jth-column of Q′.

The QUBO problem (10) is firstly converted to Ising
problem [5]

hi =
q′ii
2

+

n∑
j=1

q′ij
4
, (12)

Jij =
q′ij
4

(13)

for all i ∈ {1, . . . , n} and all i < j. In QPU, hi are
termed biases, and Jij are called couplings. Then, biases
and couplings are normalised such that hi ∈ [−2, 2] and
Jij ∈ [−1, 1], since D-Wave limits the value range of bi-
ases in [−2, 2] and couplings in [−1, 1] [4]. Next, the initial
and final Hamiltonians are computed

Hinit =
∑
i

σ̂(i)
x , (14)

Hfinal =
∑
i

hiσ̂
(i)
z +

∑
i<j

Jij σ̂
(i)
z σ̂(j)

z (15)

where,

σ̂(i)
x =

N︷ ︸︸ ︷
I⊗ I⊗ · · · ⊗ I⊗ σx ⊗ I⊗ · · · ⊗ I,

σ̂(i)
z =

N︷ ︸︸ ︷
I⊗ I⊗ · · · ⊗ I⊗ σz ⊗ I⊗ · · · ⊗ I,

σ̂(i)
z σ̂(j)

z =

N︷ ︸︸ ︷
I⊗ · · · ⊗ σz ⊗ I⊗ · · · ⊗ I⊗ σz ⊗ · · · ⊗ I,

I =

[
1 0
0 1

]
, σx =

[
0 1
1 0

]
, σz =

[
1 0
0 −1

]
,

the Hamiltonian of the quantum computer is represented as

H(s) = (1− s)Hinit + sHfinal, (16)

where s ∈ [0, 1] is the normalised annealing time.

ith position

ith position

ith position jth position

For a particular s, H(s) is a 2N × 2N matrix, which is
then decomposed to obtain the smallest and second small-
est eigenvalues. The eigenspectra of smallest and second
smallest eigenvalues respectively represent the ground state
and the first excited (high) energy state. The minimum gap
between those two eigenspectra represents the spectral gap.

Results. The synthetic data with the setting same as that
of Sec. 6.1 is generated, where N = 5, outlier ratio = 0.4,
λ ∈ [0.1, 100], and A containing all hyperedges E.
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Figure 1. Spectral gap.

As the penalty λ increases, the spectral gap quickly re-
duces (Fig. 1). This implies that the probability of the quan-
tum system remains in the ground state during the annealing
time decreases with larger λ.

The eigenvalues of specific penalty λ is also shown in
Fig. 2, which indicates the decrease of spectral gap with
larger penalty λ.
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Figure 2. Eigenvalues of ground state and first excited (high) en-
ergy state for every penalty value λ, where the minimum gap be-
tween two eigenspectrums is the spectral gap.

E. Benefit of penalty decay

Fig. 3 shows the comparison between fixing λ and de-
caying λ in fundamental matrix estimation. The decay pa-
rameters are set same as those in Sec. 6.2.1. If the penalty
λ is large (λ = 1), Alg. 1 can quickly find a consensus set
but the error bounds cannot be tightened. By contrast, if the
penalty λ is small (λ = 0.02), Alg. 1 will require more iter-
ations to find a consensus set. Therefore, decaying penalty
λ is a reasonable strategy that helps Alg. 1 quickly find a
consensus set and efficiently tighten the error bound.
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(b) KITTI 198-201
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Figure 3. Comparing fixed penalty λ to penalty λ being decayed. The error bound cannot be tightened with a large penalty (left), while
Alg. 1 requires more iterations to find a consensus set (middle). Therefore, decaying penalty can quickly find a consensus set and efficiently
tighten the error bound (right).

F. Minor embedding

Before quantum annealing, minor embedding should be
performed to embed Q′ (Eq. (10)) to the QPU topology.

0 10 20 30 40 50

Number of hyperedges

0

0.5

1

1.5

2

T
im

e
 (

s)

0 10 20 30 40 50

Number of hyperedges

20

40

60

80

100

120

N
u
m

b
e
r 

o
f 
va

ri
a
b
le

s QUBO
eQUBO

(a) N = 20

0 20 40 60 80 100

Number of hyperedges

0

1

2

3

4

5

6

T
im

e
 (

s)

0 20 40 60 80 100

Number of hyperedges

50

100

150

200

250

N
u

m
b

e
r 

o
f 

v
a

ri
a

b
le

s QUBO
eQUBO

(b) N = 50
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(c) N = 100

Figure 4. The embedding time (left) and total number of variables
(right) of QUBO (10) before and after embedding to QPU topol-
ogy (respectively denoted as QUBO and eQUBO).

To investigate the minor embedding, synthetic data with
the setting same as that of Sec. 6.1 is generated, where
N = 20, 50, 100 and outlier ratio = 0.2. In every itera-
tion of Alg. 1, we measure the embedding time and total
number of variables of QUBO (10) before and after em-
bedding (see Fig. 4). In all cases, the embedding time and
number of variables increase as more hyperedges are sam-
pled. Also see Fig. 5 for the visualisation of the embedding
on the QPU.

G. More experimental results on real data
Fundamental matrix estimation. Fig. 6 shows the inter-
mediate outputs of Alg. 1-F on Zoom, Valbonne and KITTI
104-108. A same conclusion as Sec. 6.2.1 can be drawn.

Triangulation. Fig. 7 shows the Alg. 1-F’s intermediate
outputs on Nikolai point 534, Linkoping point 14 and Tower
point 3. A same conclusion as Sec. 6.2.2 can be drawn.
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(a) (From left to right) N=5 (# hyperedges = 4), N=10 (# hyperedges = 16), N = 20 (# hyperedges = 50), and N = 30 (# hyperedges = 80).

(b) (From left to right) N=50 (# hyperedges = 100), and N=100 (# hyperedges = 150)

Figure 5. Visualisation of the embedding using D-Wave problem inspector [3]. Each node represents a physical qubit. In each node, the
colors in the outer rings represents the signs of qubit biases measured in the lowest energy state; and the inner colors represent the solutions.
Edges represent the coupling strengths.
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Figure 6. Fundamental matrix estimation, where number of outliers ∥z∥1 and lower bound LP (A), plotted across the iterations of Alg. 1-F.
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Figure 7. Multi-view triangulation, where number of outliers ∥z∥1 and lower bound LP (A) plotted across the iterations of Alg. 1-F.
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