
Supplement Material for One Loss for Quantization:
Deep Hashing with Discrete Wasserstein Distributional Matching

Khoa D. Doan, Peng Yang, Ping Li
Cognitive Computing Lab

Baidu Research
10900 NE 8th St. Bellevue, WA 98004, USA

{khoadoan106, pengyang01, pingli98}@gmail.com

This document provides additional details and experi-
mental results to support the main submission. We begin by
providing a more detailed discussion on the existing quan-
tization approaches in Section A. Next, we discuss the de-
tailed experimental setup and implementation of the meth-
ods in Section B and provide additional experiments on the
related works in Section C. Then, we provide the formal
proofs for the Theorems in the main paper in Section D. Fi-
nally, we discuss the limitations of this work in Section E.

A. Related Quantization Methods

Earlier works [5, 8, 9] avoid the discrete output and em-
ploy the tanh activation. To ensure the low-quantization er-
ror between the discrete constraint and continuous relax-
ation, they minimize a linear combination of heuristic ob-
jectives. It has been shown that these methods have sub-
optimal performance [4,7]. CSQ [10] uses bi-modal Lapla-
cian prior, which is defined as Lq = Ex(|||h(x)| − 1||1)
where 1 is an all-one vector in Rm, to learn hash codes
with low-quantization error. Since it is difficult to calcu-
late the derivative of this non-smooth objective function,
CSQ adopt the smooth function log cosh [10], as follows:
Lq = Ex(logcosh(|2h(x)| − 1)). CSQ, however, lacks
the code-balance objective. HashNet [2] approximate the
discrete output with a tanh activation function, but uses a
continuation technique to gradually squash the activation of
the tanh activation toward -1 and 1 during training. Coding
balance is also not considered in HashNet. GreedyHash [7]
directly use the sign function for the discrete constraint, and
during backpropagation, it uses the straight through opera-
tor, where the gradients are transmitted intactly to the front
layer to avoid the vanishing gradients. DSDH [4] constrain
the outputs of the last layer to be binary codes directly by
using an alternating method that alternates between discrete
and continuous optimizations to reduce the quantization.
The primary limitations of these methods are that (i) learn-
ing on the non-smooth quantization function (i.e., sign) is

relaxed for easier optimization, defeating the purpose of di-
rectly using the discrete function, and (i) coding balance is
not rigorously considered.

B. Detailed Experimental Setup

To ensure a fair evaluation between the proposed quan-
tization approach and the previous quantization methods,
we utilize two well-known deep hash function architectures,
VGG11 [6] and AlexNet [3]. The experiments are then con-
ducted on several well-studied datasets for image retrieval
and learning to hash domains.

• DSDH [4]: DSDH learns the binary codes based on
Fisher’s discriminant analysis by maximizing the sep-
arability between labeled data from different classes
while the unlabeled data are used for regularization.

• HashNet [2]: HashNet balances the positive and nega-
tive pairs in the training data to trade-off between pre-
cision and recall. HashNet utilizes the pairwise labels
to preserve the similarity and a continuation technique
to lower the quantization error.

• GreedyHash [7]: GreedyHash proposes to minimize
the quantization loss on the code bottleneck by ignor-
ing the entropy of the codes. GreedyHash utilizes the
point-wise classification task on the binary codes to
preserve the similarity.

• DCH [1]: DCH designs a pairwise cross-entropy loss
based on the Cauchy distribution that penalizes assign-
ment of similar image pairs to binary codes with larger
Hamming distance than a radius threshold.

• CSQ [10]: CSQ uses Hadamard matrix as ”hash cen-
ters” then learns the binary code with binary cross en-
tropy loss.

1

• DBDH [11]: DBDH directly outputs the binary code
to further reduce the quantization error. For optimiza-
tion, DBDH and uses the straight-through estimator for
discrete gradient propagation.

B.1. Dataset Details

In this section, we provide the detailed description of the
datasets used to evaluate the methods in our paper.
NUS-WIDE dataset contains 269,648 images, each of
which belongs to at least one of the 81 concepts. We ran-
domly select 5,000 images for the query set, with the re-
maining images used as the retrieval set. 10,000 images
randomly selected in the retrieval set are used for training.
COCO dataset contains 123,287 images, labeled with at
least 1 out of 80 semantic concepts. Similarly, the query
set is randomly constructed with 5,000 images, with the re-
maining images used as the retrieval set (10,000 randomly
selected images in this set are used for training).
CIFAR-10 contains 60,000 images organized into 10 se-
mantic classes, out of which 1,000 images are randomly se-
lected as the query set, and the remaining images used as
the retrieval set. Similarly, 5,000 images randomly selected
from the retrieval set are used for training.

B.2. Implementation Details

For each method, we uses either AlexNet or Vgg11 as
the backbone (i.e., the hash function). We modify the hash-
ing methods in our experiments by replacing their origi-
nal quantization losses with the proposed quantization ap-
proaches. The code of the experiments is provided along
with this document as parts of the Supplementary Materi-
als.

C. Additional Experiments

C.1. Additional retrieval comparisons

We report additional mAP results when learning the 128-
bit hash functions with VGG11 backbone [6] in Table 4.
Additional results on AlexNet backbone [3] are also re-
ported in Tables 5 and 6. We can observe that the pro-
posed quantization achieves better performance, in terms
of mAP, compared to the original quantization approaches,
as shown in Table 5. We also observe a similar result for
Precision@1000 which is another common metric used to
evaluate hashing methods, as in Table 6,

D. Proofs

Theorem 1. The proposed distance Sliced Wasserstein cal-
culation in Theorem 1, denoted as HSWD, is a valid dis-
tance function of probability measures in this space.

Table 4. Mean Average Precision (mAP) for learning the 128-bit
hash functions on the three image datasets. The blue value (in
bold) along the mAP value of each of the proposed approaches
shows the relative improvement over the original algorithm, while
the italicized value indicates no improvement.

Method CIFAR-10 NUS-WIDE COCO
DSDH [4] 0.8356 0.8704 0.8240
DSDH-S 0.8544/2.3% 0.8710/0.1% 0.8480/2.9%
DSDH-C 0.8685/3.9% 0.8864/1.8% 0.8480/2.9%
HashNet [2] 0.8590 0.8758 0.8292
HashNet-S 0.8730/1.6% 0.8780/0.3% 0.8388/1.1%
HashNet-C 0.8769/2.1% 0.8880/1.4% 0.8342/0.6%
GreedyHash [7] 0.8625 0.8409 0.7832
GreedyHash-S 0.8685/0.7% 0.8439/0.4% 0.7901/0.9%
GreedyHash-C 0.8726/1.2% 0.8510/1.2% 0.7957/1.6%
DCH [1] 0.8480 0.7937 0.7667
DCH-S 0.8521/0.5% 0.8016/1.0% 0.7691/0.3%
DCH-C 0.8599/1.4% 0.8126/2.4% 0.7790/1.6%
CSQ [10] 0.6783 0.7550 0.8146
CSQ-S 0.8401/4.1% 0.8555/3.2% 0.8554/2.3%
CSQ-C 0.8457/4.8% 0.8558/3.2% 0.8652/3.4%
DBDH [11] 0.8553 0.8641 0.8122
DBDH-S 0.8743/2.2% 0.8800/1.8% 0.8470/4.3%
DBDH-C 0.8702/1.7% 0.8738/1.1% 0.8435/3.6%

Proof. We first prove that HSWD satisfies the triangle in-
equality. Let Ii be column i of the Identity Matrix I ∈
Rm×m. We have:

D(h(X), B) ≈

(
1

m

m∑
l=1

[W(h(X)l,:, Bl,:)]
2

)1/2

(1)

=

(
1

m

m∑
l=1

[W(ITi h(X), ITi Bl,:)]
2

)1/2

(2)

Since this is equivalent to SWD where there the projec-
tions are Ii for i = 1, ...,m, HSWD is a valid distance.

E. Limitations
This paper presented a quantization approach to improve

the retrieval performance of existing deep supervised hash-
learning methods. Our study mainly targets the deep su-
pervised image hashing domain. Our work can be applied
along with existing methods in this domain to enhance the
overall performance. However, we believe there is a large
room for the applications of the proposed approach in a
more general settings, e.g., unsupervised image hashing or
discrete-optimization problems.

Table 5. Mean Average Precision (mAP) for different numbers of bits on the three image datasets. The blue value (in bold) along the mAP
value of each of the proposed approaches shows the relative improvement over the original algorithm, while the italicized value indicates
no improvement

Method CIFAR-10 NUS-WIDE
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

DSDH 0.7366 0.7655 0.7728 0.8080 0.8248 0.8370
DSDH-S 0.7886/7.1% 0.8031/4.9% 0.8128/5.2% 0.8111/0.4% 0.8247/0.0% 0.8371/0.0%
DSDH-C 0.7995/8.6% 0.8133/6.2% 0.8190/6.0% 0.8156/0.9% 0.8346/1.2% 0.8436/0.8%
HashNet 0.6175 0.8016 0.8184 0.7578 0.8134 0.8469
HashNet-S 0.7762/25.7% 0.8175/2.0% 0.8304/1.5% 0.7722/1.9% 0.8176/0.5% 0.8437/-0.4%
HashNet-C 0.7140/15.6% 0.8092/1.0% 0.8300/1.4% 0.7464/-1.5% 0.8068/-0.8% 0.8412/-0.7%
GreedyHash 0.7888 0.8002 0.8258 0.7535 0.7930 0.8097
GreedyHash-S 0.7841/-0.6% 0.8175/2.2% 0.8256/0.0% 0.7575/0.5% 0.7893/-0.5% 0.8083/-0.2%
GreedyHash-C 0.7902/0.2% 0.8174/2.1% 0.8217/-0.5% 0.7583/0.6% 0.7894/-0.4% 0.8158/0.7%
DCH 0.7830 0.8063 0.7990 0.7819 0.7866 0.7918
DCH-S 0.7958/1.6% 0.8055/-0.1% 0.7939/-0.6% 0.7807/-0.1% 0.7908/0.5% 0.7860/-0.7%
DCH-C 0.8010/2.3% 0.8055/-0.1% 0.7986/0.0% 0.7878/0.8% 0.7886/0.3% 0.7843/-0.9%
CSQ 0.7840 0.7976 0.7992 0.7813 0.8202 0.8366
CSQ-S 0.8035/2.5% 0.8105/1.6% 0.8099/1.3% 0.7958/1.9% 0.8227/0.3% 0.8363/0.0%
CSQ-C 0.8017/2.3% 0.8109/1.7% 0.8034/0.5% 0.7937/1.6% 0.8274/0.9% 0.8377/0.1%
DBDH 0.7617 0.7731 0.7864 0.8101 0.8278 0.8377
DBDH-S 0.8024/5.3% 0.8073/4.4% 0.8119/3.2% 0.8153/0.6% 0.8342/0.8% 0.8424/0.6%
DBDH-C 0.8030/5.4% 0.8122/5.0% 0.8064/2.5% 0.8109/0.1% 0.8338/0.7% 0.8435/0.7%

Table 6. Precision@1000 for different numbers of bits on the three image datasets. The blue value (in bold) along the mAP value of each of
the proposed approaches shows the relative improvement over the original algorithm, while the italicized value indicates no improvement

Method CIFAR-10 NUS-WIDE
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

DSDH 0.8252 0.8406 0.8396 0.8117 0.8294 0.8425
DSDH-S 0.8526/3.3% 0.8543/1.6% 0.8644/2.9% 0.8162/0.6% 0.8312/0.2% 0.8446/0.2%
DSDH-C 0.8645/4.8% 0.8739/4.0% 0.8811/4.9% 0.8195/1.0% 0.8391/1.2% 0.8487/0.7%
HashNet 0.6193 0.8613 0.8711 0.7581 0.8158 0.8524
HashNet-S 0.8470/36.8% 0.8755/1.7% 0.8804/1.1% 0.7743/2.1% 0.8199/0.5% 0.8491/-0.4%
HashNet-C 0.7698/24.3% 0.8715/1.2% 0.8719/0.1% 0.7456/-1.7% 0.8078/-1.0% 0.8456/-0.8%
GreedyHash 0.8561 0.8616 0.8701 0.7601 0.8009 0.8198
GreedyHash-S 0.8583/0.3% 0.8656/0.5% 0.8695/-0.1% 0.7657/0.7% 0.7973/-0.5% 0.8180/-0.2%
GreedyHash-C 0.8517/-0.5% 0.8700/1.0% 0.8652/-0.6% 0.7630/0.4% 0.7931/-1.0% 0.8200/0.0%
DCH 0.8621 0.8568 0.8639 0.7843 0.7898 0.7925
DCH-S 0.8622/0.0% 0.8761/2.3% 0.8730/1.1% 0.7846/0.0% 0.7923/0.3% 0.7887/-0.5%
DCH-C 0.8654/0.4% 0.8635/0.8% 0.8606/-0.4% 0.7893/0.6% 0.7914/0.2% 0.7868/-0.7%
CSQ 0.8510 0.8571 0.8619 0.7903 0.8285 0.8446
CSQ-S 0.8661/1.8% 0.8732/1.9% 0.8667/0.6% 0.8034/1.7% 0.8318/0.4% 0.8442/-0.1%
CSQ-C 0.8670/1.9% 0.8688/1.4% 0.8619/0.0% 0.8007/1.3% 0.8353/0.8% 0.8455/0.1%
DBDH 0.8440 0.8421 0.8488 0.8122 0.8323 0.8435
DBDH-S 0.8626/2.2% 0.8675/3.0% 0.8732/2.9% 0.8177/0.7% 0.8388/0.8% 0.8486/0.6%
DBDH-C 0.8658/2.6% 0.8731/3.7% 0.8655/2.0% 0.8135/0.1% 0.8380/0.7% 0.8490/0.7%

References

[1] Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang.
Deep cauchy hashing for hamming space retrieval. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1229–1237, Salt Lake
City, UT, 2018. 1, 2

[2] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S
Yu. Hashnet: Deep learning to hash by continuation. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 5608–5617, Venice, Italy, 2017. 1, 2

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-
tems (NIPS), pages 1106–1114, Lake Tahoe, NV, 2012. 1,
2

[4] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. Deep supervised
discrete hashing. In Neural Information Processing Systems
(NIPS), pages 2479–2488, Long Beach, CA, 2017. 1, 2

[5] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen.
Supervised discrete hashing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 37–45, Boston, MA, 2015. 1

[6] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Pro-
ceedings of the 3rd International Conference on Learning

Representations (ICLR), San Diego, CA, 2015. 1, 2
[7] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian.

Greedy hash: Towards fast optimization for accurate hash
coding in CNN. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 806–815, Montréal, Canada,
2018. 1, 2

[8] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and
Shuicheng Yan. Supervised hashing for image retrieval via
image representation learning. In Carla E. Brodley and Peter
Stone, editors, Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence (AAAI), pages 2156–2162,
Québec City, Canada, 2014. 1

[9] Huei-Fang Yang, Kevin Lin, and Chu-Song Chen. Super-
vised learning of semantics-preserving hash via deep convo-
lutional neural networks. IEEE Trans. Pattern Anal. Mach.
Intell., 40(2):437–451, 2018. 1

[10] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Ze-
qun Jie, Wei Liu, and Jiashi Feng. Central similarity quan-
tization for efficient image and video retrieval. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3083–3092, Seattle, WA,
2020. 1, 2

[11] Xiangtao Zheng, Yichao Zhang, and Xiaoqiang Lu. Deep
balanced discrete hashing for image retrieval. Neurocomput-
ing, 403:224–236, 2020. 2

	. Related Quantization Methods
	. Detailed Experimental Setup
	. Dataset Details
	. Implementation Details

	. Additional Experiments
	. Additional retrieval comparisons

	. Proofs
	. Limitations

