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In this document we provide the proof to the main the-
orems, more qualitative results, an extensive ablation study
and additional insights about the approach described in the
main manuscript.

1. Proof of Theorem 1, 2, 3
Theorem 1. Given a set of shapes {Si} that all contain an
orientation reversing isometric self-symmetry {Ti : Si →
Si}, s.t. dSi

(xj , xk) = dSi
(Ti(xj), Ti(xk)), then a generic

neural network FΘ that is trained by any of the losses intro-
duced in [12, 10, 9, 13, 3] has at least two possible solutions
that both lead to the global optimum of the loss.

Proof. The spectral losses L defined in [12, 10, 9, 13, 3] are
fully intrinsic, thus they are invariant under shape isometric
changes i.e. L ◦ Ti = L. So, if all shapes admits an isomet-
ric self-symmetry, the solution composed with the isometry
will have the same loss value.

Theorem 2. The complex-linear map Q is a pushforward if
and only if there exists an orientation-preserving and con-
formal diffeomorphism φ : M → N satisfying:

⟨X,∇C(f)⟩TM = C (⟨Q(X),∇f⟩TN ) , (1)

for all X ∈ TM, f ∈ L2(N).

Proof. See Theorem 3.1 in [6], Section 3.5

Theorem 3. Let M,N be two manifolds, and FM , FN

surface features such that the functional map C estimated
from these features is an isometry. Let Q be the complex
functional map computed with the feature gradients as de-
scribed in the main manuscript. Then the maps (C,Q) sat-
isfy Eq. (1), and C is an orientation-preserving isometry.

Proof. By assumption the functional map C : L2(N) →
L2(M) represents the isometric map φ : M → N and ex-
actly transfers the descriptors i.e. C(FN ) = FM . Moreover
the complex functional map Q : TM → TN transfers the

Meth / Data SMAL r
xyz input-3 axis 25.
xyz input-1 axis 5.9
nonOA-FE 34.
no Q-maps (epoch 3) 5.8
no Q-maps (epoch 15) 8.1
Ours (epoch 3) 4.8
Ours (epoch 15) 5.1

Table 1. Comparative results (×100) for the different ablations of
our method.

gradient of the descriptors Q(∇MFM ) = ∇NFN and is
complex-linear.

To recover Eq. (1), we take the inner product of the
gradient transfer with the gradient of an arbitrary function
f : N → R:

gN
p (Q(∇MFM ),∇Nf) = gN

p (∇NFN ,∇Nf) .

This equation easily simplifies using the properties of
an isometric map: the metric is preserved by the pullback
(φ⋆gN = gM ) and the pushforward commutes with the
gradient (dφ−1 (∇Nf) = ∇MC(f)), yielding:

gN
p (Q(∇MFM ),∇Nf)

=
(
(φ⋆)

−1
gM

)
φ−1(p)

(
dφ−1 (∇NFN ) ,dφ−1 (∇Nf)

)
= gM

φ−1(p) (∇MC(FN ),∇MC(f))

So Q and C satisfy Eq. (1) for all complex-linear com-
bination of the gradient descriptors. Therefore, following
Thm. 2, Q is the pushforward associated to φ and C must
be orientation preserving.

2. Ablation Study
This section presents an ablation study for the most vital

components of our approach, namely: a) The input signal
fed to the network, b) The orientation-aware feature extrac-
tor c) The orientation-aware loss. We test these ablations on
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Figure 1. SCAPE [1] dataset remeshed in an anisotropic fashion,
used in the first experiment of the main manuscript

our third experiment, on the SMAL dataset [16] (see main
manuscript, Section 5.1 for more details), and to a maxi-
mum of 20 epochs. We compare these three ablations to our
approach and report the results in Table 1. The ablations are
commented in details in the sections below.

2.1. The WKS descriptors as input features

As stated in the main manuscript, many unsupervised
deep learning for non-rigid 3D shape matching rely on
SHOT descriptors [15] as input signal for the neural net-
work to produce correspondences between shapes [10, 12,
8]. This descriptor is orientation-aware but very sensitive
to the input triangulation, resulting in overfitting with the
training triangulation as demonstrated in [7], and also in the
first experiment of the main manuscript, with anisotropic
remeshings.

Therefore we use an input descriptor that is agnostic to
the input triangulation so as to not overfit to it: the WKS de-
scriptor [2], which is built using the eigenvectors and eigen-
values of the Laplace-Beltrami operator. These descriptor
functions hk are therefore fully intrinsic, and will display
the same intrinsic self-symmetries as the shapes themselves.
Namely, with the notations of Theorem 1, hk ◦ T = hk.

Another commonly used option for an input signal is the
3-dimensional extrinsic coordinates of the shape points, as
done in [7]. However, this input signal is dependent on the
shape orientation in space. Consequently, the input data
needs to be centered, and augmented by adding randomly
rotated poses. With this input signal, the method is no
longer fully intrinsic and therefore potentially unstable to
rotations of the input shapes. For this first ablation exper-
iment, we train our method with this input signal (denoted
as “xyz input” in Table 1) instead of WKS descriptors. To
make the experiment more complete, we report the results
with two different data augmentations: a) The general case,
where there is no prior on the shapes alignment, so the data
need to be augmented with all 3D rotations (3 parameters
space). We denote this data augmentation as “3 axis” in
Table 1. b) The special case where the input shapes are
all aligned to one axis, but potentially rotated around this

Source Ground truth

Ours Deep Shells (w/SHOT) Deep Shells (w/WKS) ZoomOut (w/WKS ini) BCICP (w/WKS ini)

Figure 2. Qualitative comparison to baselines on the SMAL
dataset, using texture transfer from source to target shape. Only
our method gives accurate correspondence, whereas in this chal-
lenging case baselines completely fail to predict the map.

axis, so the data needs to be augmented around this axis (1
parameter space). We denote this data augmentation as “1
axis” in Table 1. We stress the fact that this kind of prior
on the shapes rigid alignment already makes the method
weakly supervised.

We see in Table 1 that even with the prior of shapes
aligned to one axis, our method is better (and more general)
when trained with WKS descriptors as an input signal.

2.2. The orientation-aware feature extractor

To make our approach unsupervised, it is crucial that the
feature extractor should be orientation-aware. Indeed, since
we train on shapes exhibiting an isometric self symmetry
(the left-right symmetry present in all animal shapes), the
only way to disambiguate between left and right is through
orientation, since the symmetric map reverses this orienta-
tion. DiffusionNet [14] uses gradient features to incorpo-
rate this orientation information into potentially symmetric
inputs (e.g. WKS descriptors in our case). For this second
ablation, we propose to show that without this orientation-
aware feature extractor, the method fails to produce infor-
mative descriptors, and report the results in Table 1, on
row “nonOA-FE” (standing for non orientation-aware fea-
ture extractor).

To that end, we deactivate the gradient-based blocks of
DiffusionNet, which results in a new orientation-agnostic
feature extractor which can still produce excellent results
[14]. We then train our method using this feature extrac-
tor and WKS as input signal. We see in Table 1 that this
ablation greatly impairs the method.

2.3. The complex functional maps block and the
orientation-aware loss

We remove the complex functional map block from the
loss by setting wQ-ortho = 0. As discussed in Theorem 1,
the resulting network is not guaranteed or encouraged to
produce orientation-preserving correspondence. We report
the result of this ablation in Table 1, on rows “no Q-maps”.

We observe that this ablation still seems to converge to
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Figure 3. Visualization of two different scalar descriptors learned
by our method, along with their vector valued counterparts, on 3
mesh from the SMAL dataset. Contrary to the descriptors pro-
duced by [7], these descriptors are fully intrinsic and generally not
localised. However, we see that both our scalar and vector valued
descriptors are robust to strong distortions.

well oriented maps in this case. This may be explained
by the fact that DiffusionNet can produce non-symmetric
descriptors from symmetric input like WKS, using shape
orientation through gradients. Therefore, if two input
shapes are consistently oriented, the symmetric input sig-
nal will be broken “in the same direction” by Diffusion-
Net gradient-based blocks. Conversely, if two shapes are
non-consistently oriented (e.g. one with inward normals,
one with outwards normals), the symmetry will be broken
“in opposite directions”. In fact, using this remark one can
retrieve symmetrized output descriptor functions (by sym-
metrized, here we mean composited with the intrinsic sym-
metric map Ti of the shape Si) generated by DiffusionNet
from symmetric descriptors such as WKS, by simulating a
change in shape orientation (which corresponds to a con-
jugation operation on the tangent bundle structure, or more
practically to setting gradY = -gradY in DiffusionNet
gradient operator entries).

In practice, a second beneficial effect of our complex
functional map loss is the reduction of overfitting. In-
deed, in the experiment reported in Table 3 of the main
manuscript, the train set is made of 32 SMAL re-meshed
shapes and the test set is made of 17 shapes other SMAL re-
meshed shapes. Learning methods are thus liable to overfit
to their training set. We see in Table 1 (where we report
the geodesic error at epoch 3 and epoch 15 both with and
without the complex functional map layer/loss) that with-
out the complex functional map loss, the method is more
prone to overfitting, as it looses generality if trained for
too many epochs. To summarize, our complex functional
map block and loss theoretically guarantee our approach to
be orientation-preserving, and in practice also improve the
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Figure 4. Quantitative results of the different methods using the
protocol introduced in [11], on the SMAL remeshed test set (third
experiment of the main manuscript).

pipeline stability with respect to overfitting.

3. More quantitative results

For completeness, we also report in Figure 4 the accu-
racy of our method and some baselines on the third exper-
iment we conducted in the main manuscript (train on 32
SMAL remeshed shapes, test on 17 other SMAL remeshed
shapes), using the evaluation protocol introduced in [11].
We see that our method gives the best correspondence qual-
ity by far, as in this case it always finds the well-oriented
map (which results in the tail of the error curve being very
close to 1).

4. More qualitative results

4.1. Anisotropic remeshing

In Figure 1, we show the anisotropic remeshing of
SCAPE dataset [1], generated with Mmg [5, 4]. We use this
anosotropic remeshing in the first experiment of the main
manuscript to show that SHOT [15] based learning meth-
ods do not generalize to unseen triangulation. Indeed, we
see in Figure 1 that the triangle scale is a function of the
element coordinate. For the first seven shapes of SCAPE
test set, we constrain the triangle size to be dependent on
the position on the up axis. For the next seven shapes, we
constraint the triangle size to be dependent on the position
on the back-front axis. For the remaining six shapes, we
constraint the triangle size to be dependent on the position
on the left-right axis. With this remeshing, a network over-
fitting the triangulation combinatorics will most likely fail
to predict the desired map. Our method, which is triangu-
lation agnostic, remains almost unaltered, as shown in the
first experiment of the main manuscript.



4.2. Another qualitative comparison on SMAL

We report in Figure 2 a second texture transfer performed
by baselines compared with our method on the SMAL test
shapes. For this example the distortion between the two
shapes is stronger than in the one displayed in the main
manuscript. However, our method still manages to predict
accurate correspondences, while baselines fail to produce
even a reasonable mapping in this case.

4.3. Visualization of the scalar & vector valued de-
scriptors learned by our method

Lastly, we propose to visualize descriptors learned by
our network, also on the SMAL dataset, in Figure 3. Since
our method also exploits the gradients of the scalar descrip-
tors learned by DiffusionNet, we also visualize these gradi-
ents (here rotated by π/2 to better make singularities stand
out). Our method enforces learned descriptors and their
gradients to correspond between source and target shapes,
which was not done in any previous work to the best of
our knowledge. Consequently, the features obtained with
our method are all the more robust, since their gradients are
also well preserved under shape non-rigid deformation.
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