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Experiment Details

In this section, we provide more detailed experimental
settings about ImageNet and downstream tasks.
ImageNet-1K Classification. For a fair comparison, we
follow the training strategy in DeiT [22]. Specifically, all
our models are trained for 300 epochs with the input size
of 224 x 224. We use the AdamW optimizer with weight
decay of 0.05 for CSWin-T/S and 0.1 for CSWin-B. The
default batch size and initial learning rate are set to 2048 and
2e — 3 respectively, and the cosine learning rate scheduler
with 20 epochs linear warm-up is used. We adopt most of
the augmentation in [22], including RandAugment [8] (rand-
m9-mstd0.5-inc1) , Mixup [29] (prob = 0.8), CutMix [28]
(prob = 1.0), Random Erasing [31] (prob = 0.25) and Ex-
ponential Moving Average [19] (ema-decay = 0.99984),
increasing stochastic depth [14] (prob = 0.2,0.4,0.5 for
CSWin-T, CSWin-S, and CSWin-B respectively).

When fine-tuning with 384 x 384 input, we follow the
setting in [17] that fine-tune the models for 30 epochs with
the weight decay of 1e-8, learning rate of 5e-6, batch size
of 256. We notice that a large ratio of stochastic depth is
beneficial for fine-tuning and keeping it the same as the
training stage.

COCO Object Detection and Instance Segmentation. We
use two classical object detection frameworks: Mask R-
CNN [12] and Cascade Mask R-CNN [1] based on the im-
plementation from mmdetection [3]. For Mask R-CNN, we
train it with ImageNet-1K pretrained model with two set-
tings: 1x schedule and 3x+MS schedule. For 1x schedule,
we train the model with single-scale input (image is resized
to the shorter side of 800 pixels, while the longer side does
not exceed 1333 pixels) for 12 epochs. We use AdamW [18]
optimizer with a learning rate of 0.0001, weight decay of
0.05 and batch size of 16. The learning rate declines at the
8 and 11 epoch with decay rate 0.1. The stochastic depth
is also same as the ImageNet-1K setting that 0.1, 0.3, 0.5

for CSWin-T, CSWin-S, and CSWin-B respectively. For
3x+MS schedule, we train the model with multi-scale input
(image is resized to the shorter side between 480 and 800
while the longer side is no longer than 1333) for 36 epochs.
The other settings are same as the 1x except we decay the
learning rate at epoch 27 and 33. When it comes to Cascade
Mask R-CNN, we use the same 3 x+MS schedule as Mask
R-CNN.

ADE20K Semantic segmentation. Here we consider two
semantic segmentation frameworks: UperNet [25] and Se-
mantic FPN [15] based on the implementation from mmseg-
mentaion [7]. For UperNet, we follow the setting in [17] and
use AdamW [18] optimizer with initial learning rate 6e =5,
weight decay of 0.01 and batch size of 16 (8 GPUs with
2 images per GPU) for 160K iterations. The learning rate
warmups with 1500 iterations at the beginning and decays
with a linear decay strategy. We use the default augmenta-
tion setting in mmsegmentation including random horizontal
flipping, random re-scaling (ratio range [0.5, 2.0]) and ran-
dom photo-metric distortion. All the models are trained with
input size 512 x 512. The stochastic depth is set to 0.2,
0.4, 0.6 for CSWin-T, CSWin-S, and CSWin-B respectively.
When it comes to testing, we report both single-scale test
result and multi-scale test ([0.5, 0.75, 1.0, 1.25, 1.5, 1.75]x
of that in training).

For Semantic FPN, we follow the setting in [23]. We
use AdamW [ 18] optimizer with initial learning rate le ™4,
weight decay of 1e~* and batch size of 16 (4 GPUs with 4
images per GPU) for 80K iterations.

Ablation study details. In the ablation study part, we evalu-
ate each component with previous methods. For the “Parallel
Multi-Head Grouping” part, we use CSWin-Tiny as back-
bone, including LePE, conv position embedding. To reduce
the influence of the last stage, we use full attention in the last
stage for all settings, i.e. we only apply different attention
mechanisms in the first three stages (1+2+21 blocks) and



full attention in the last stage(1 block).

Similarly, for the “Attention Mechanism Comparison”
part, as some of the methods need even number of blocks in
each stage, we use Swin-Tiny as backbone (non-overlapped
token embedding, Relative Position Embedding) and change
the attention mechanism for the first three stage (2+2+6
blocks) and full attention in the last stage(2 block).

More Experimetns

With the limitation of pages, we only compare with a few
classical methods in our paper, here we make a comprehen-
sive comparison with more current methods on ImageNet-
1K. We find that our CSWin performs best in concurrent
works.
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Method #Param.  FLOPs | Top-1 Method #Param.  FLOPs | Top-1 Method #Param.  FLOPs | Top-1
Reg-4G [20] 21IM 4.0G 80.0 Reg-8G [20] 39M 8.0G 81.7 Reg-16G [20] 84M 16.0G 82.9
Eff-B4* [21] 19M 4.2G 82.9 Eff-B5* [21] 30M 9.9G 83.6 Eff-B6* [21] 43M 19.0G 84.0
DeiT-S [22] 22M 4.6G 79.8 PVT-M [23] 44M 6.7G 81.2 DeiT-B [22] 87M 17.5G 81.8
PVT-S [23] 25M 3.8G 79.8 PVT-L [23] 61M 9.8G 81.7 PiT-B [13] 74M 12.5G 82.0
T2T-14 [27] 22M 5.2G 81.5 T2T-19 [27] 39M 8.9G 81.9 T2T-24 [27] 64M 14.1G 82.3
ViL-S [30] 25M 4.9G 82.0 T2T:-19 [27] 39M 9.8G 822 T2T:-24 [27] 64M 15.0G 82.6
TNT-S [11] 24M 5.2G 81.3 ViL-M [30] 40M 8.7G 83.3 CPVT-B [0] 88M 17.6G 82.3
CViT-15 [2] 27M 5.6G 81.0 MVIiT-B [10] 37™M 7.8G 83.0 TNT-B[!1] 66M 14.1G 82.8
Visf-S [4] 40M 4.9G 82.3 CViT-18 [2] 43M 9.0G 82.5 ViL-B [30] 56M 13.4G 83.2
LVIiT-S [16] 22M 4.6G 80.8 CViT.-18 [2] 44M 9.5G 82.8 Twins-L [5] 99M 14.8G 83.7
CoaTL-S [26] 20M 4.0G 81.9 Twins-B [5] 56M 8.3G 83.2 Swin-B [17] 88M 154G 83.3
CPVT-S [0] 23M 4.6G 81.5 Swin-S [17] 50M 8.7G 83.0 CSWin-B 78M 15.0G 84.2
Swin-T[17] 29M 45G 81.3 CvT-21 [24] 32M 7.1G 82.5

CvT-13 [24] 20M 4.5G 81.6 CSWin-S 35M 6.9G 83.6

CSWin-T 23M 4.3G 82.7

ImageNet-1K 3842 finetuned models ImageNet-1K 3842 finetuned models ImageNet-1K 384 finetuned models
CvT-13 [24] 20M 16.3G 83.0 CvT-21 [24] 32M 249G 833 VIiT-B/16 [9] 86M 49.3G 77.9
T2T-14 [27] 22M 17.1G 83.3 CViT.-18 [2] 45M 324G 83.9 DeiT-B [22] 86M 554G 83.1
CViT.-15[2] 28M 21.4G 83.5 CSWin-S 35M 22.0G 85.0 Swin-B [17] 88M 47.0G 84.2
CSWin-T 23M 14.0G 84.3 CSWin-B 78M 47.0G 85.4
(a) Tiny Model (b) Small Model (c) Base Model

Table 1. Comparison of different models on ImageNet-1K classification. * means the EfficientNet are trained with other input sizes. Here
the models are grouped based on the computation complexity.
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