
Dressing in the Wild by Watching Dance Videos
Supplementary Material

Xin Dong1, Fuwei Zhao2, Zhenyu Xie2, Xijin Zhang1

Daniel K. Du1, Min Zheng1, Xiang Long1, Xiaodan Liang2∗, Jianchao Yang1

1ByteDance, 2Shenzhen Campus of Sun Yat-Sen University
{zhaofw@mail2,xiezhy6@mail2,xdliang328@mail}.sysu.edu.cn

{dongxin.1016,zhangxijin,dukang.daniel,zhengmin.666,longxiang.0,yangjianchao}@bytedance.com

1. Architecture Details
1.1. Stage 1: Conditional Person Segmentation

This stage is composed of two separate encoders and one
upsampling decoder bridged by a serious of residual blocks.
We provide in Table. 1 the detailed architecture of the three
components.

1.2. Stage 2: Pixel Flow Estimation

In this stage, we adopt the same FlowNetCorr architec-
ture proposed in [3] as our Pixel Flow Network (PFN). We
give its detailed overview in Table. 2 but refer readers to the
original paper for more motivation and details especially on
the feature correlation layer.

1.3. Stage 3: Garment Transfer with Blend Flow

We provide network details of this stage containing the
background inpainter GB , the reconstruction generator GS

and the try-on generator GT in Table. 3. Note, the architec-
ture details of GS and GT are identical, except the dimen-
sion of the inputs (i.e., 82 for GS and 85 for GT ).

2. Dataset Details
Collection and clean process. We first search for enor-

mous candidate dance videos on the public internet, and
then run on them the human detector [1] to filter out multi-
person results. Thereafter, we train Mask-RCNN [5] on
the DeepFashion2 dataset [4] to detect and classify the
clothes attributes, which is used to balance the distribution
of garment types among the videos. Finally, we construct
a large-scale dataset named Dance50k of 50, 000 single-
person dance sequences (about 15s duration) that features
diverse poses and rich garment types.
Training/Testing Split. Since we aim at image-based gar-
ment transfer, the video frames need to be sampled forming
the training/testing image collections. After applying the
sampling and asserting process described in the main paper

(Section.4.2), we get a split of 949626 and 15815 images
respectively for training and testing.
Data Examples. Fig. 1 shows examples from the
Dance50k, at which we can see most videos are taken in
the wild with clear person foreground.

3. User Study Details

We conduct a user evaluation study to assess the quality
of the garment transfer results. Specifically, 40 volunteers
are invited to complete a questionnaire that contains 30 as-
signments. In each assignment, given a source person im-
age and a query person image, the volunteers are required
to select the most realistic garment transfer image out of
2 choices, which are synthesized by our method and the
LWG [6] respectively. We do not evaluate the results of
ADGAN [7] and DiOR [2] for the user study because they
have no background. Please refer to Sec.4.3 in the main text
for the detailed quantitative results of the user study.

4. Additional Visual Results

We provide more qualitative comparisons of the gar-
ment transfer results in Fig. 2, and single-item try-on re-
sult in Fig. 3. Note, for half-to-full-body garment transfer,
we believe this would be a meaningful but ill-posed prob-
lem. Transferring a cropped garment (e.g., a half pant) to a
full-body person heavily relies on imagination of the miss-
ing source texture. While our method has the potential to
achieve that imagination, ensuring num (Is)>num (It) (as
described in the main text) is more practical valuable as peo-
ple always want the desired clothes is intact.

In Fig. 4, we further show the result comparison between
ours and the related work LWG [6] on the iPER dataset
proposed in [6]. The iPER dataset is relatively simple (es-
pecially the background) and LWG has somewhat overfit-
ted on this small dataset (∼30 videos). Our new Dance50k
dataset (∼50k videos) is much more diverse than iPER, and

1



the garment transfer results of LWG trained on Dance50k is
inferior to our wFlow (see Fig.4 in the main paper), showing
its powerlessness when scaling to large dataset with loose
garments and cluttered background.

Though the original purpose is image-based garment
transfer, our method can also generalize to video virtual try-
on in a frame-by-frame generation manner. We provide ad-
ditional video results at https://figshare.com/s/
9ceebc27955cb82a3954.

References
[1] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.

Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019. 1

[2] Aiyu Cui, Daniel McKee, and Svetlana Lazebnik. Dress-
ing in order: Recurrent person image generation for pose
transfer, virtual try-on and outfit editing. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 14638–14647, October 2021. 1

[3] A. Dosovitskiy, P. Fischer, Eddy Ilg, Philip Häusser, Caner
Hazirbas, V. Golkov, P. V. D. Smagt, D. Cremers, and T.
Brox. Flownet: Learning optical flow with convolutional net-
works. 2015 IEEE International Conference on Computer
Vision (ICCV), pages 2758–2766, 2015. 1

[4] Yuying Ge, Ruimao Zhang, Lingyun Wu, Xiaogang Wang,
Xiaoou Tang, and Ping Luo. A versatile benchmark for de-
tection, pose estimation, segmentation and re-identification of
clothing images. CVPR, 2019. 1

[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Gir-
shick. Mask r-cnn. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 42:386–397, 2020. 1

[6] Wen Liu, Zhixin Piao, Jie Min, Wenhan Luo, Lin Ma, and
Shenghua Gao. Liquid warping gan: A unified framework
for human motion imitation, appearance transfer and novel
view synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019. 1, 7,
9

[7] Yifang Men, Yiming Mao, Yuning Jiang, Wei-Ying Ma,
and Zhouhui Lian. Controllable person image synthesis
with attribute-decomposed gan. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2020. 1, 7



CSN
Layer Type Output Size

Source Encoder

Input 1 Input (512,512,83)
Conv 1-1 Conv2d 7×7, InstanceNorm, ReLU (512,512,64)
Conv 1-2 Conv2d 3×3, InstanceNorm, ReLU (256,256,128)
Conv 1-3 Conv2d 3×3, InstanceNorm, ReLU (128,128,256)
Conv 1-4 Conv2d 3×3, InstanceNorm, ReLU (64,64,512)

Target Encoder

Input 2 Input (512,512,79)
Conv 2-1 Conv2d 7×7, InstanceNorm, ReLU (512,512,64)
Conv 2-2 Conv2d 3×3, InstanceNorm, ReLU (256,256,128)
Conv 2-3 Conv2d 3×3, InstanceNorm, ReLU (128,128,256)
Conv 2-4 Conv2d 3×3, InstanceNorm, ReLU (64,64,512)

Residual Blocks

Concate Concate (Conv 1-4, Conv 2-4) (64,64,1024)
Res 1 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,1024)
Res 2 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,1024)
Res 3 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,1024)
Res 4 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,1024)
Res 5 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,1024)
Res 6 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,1024)

Decoder

Upsample 1 ConvTranspose2d 3×3, InstanceNorm, ReLU (128,128,512)
Skip Connection 1 Skip Connection (Upsample 1, Conv 1-3, Conv 2-3) (128,128,1024)

Conv 3-1 Conv2d 1×1, InstanceNorm, ReLU (128,128,512)
Upsample 2 ConvTranspose2d 3×3, InstanceNorm, ReLU (256,256,256)

Skip Connection 2 Skip Connection (Upsample 2, Conv 1-2, Conv 2-2) (256,256,512)
Conv 3-2 Conv2d 1×1, InstanceNorm, ReLU (256,256,256)

Upsample 3 ConvTranspose2d 3×3, InstanceNorm, ReLU (512,512,128)
Skip Connection 3 Skip Connection (Upsample 3, Conv 1-1, Conv 2-1) (512,512,256)

Conv 3-3 Conv2d 1×1, InstanceNorm, ReLU (512,512,128)
Conv 3-4 Conv2d 7×7, input from Conv 3-3 (512,512,2)
Conv 3-5 Conv2d 7×7, input from Conv 3-3 (512,512,20)

Table 1. The architecture details of Conditional Segmentation Network (CSN).



PFN
Layer Type Output Size

Source Encoder

Input 1 Input (512,512,83)
Conv 1-1 Conv2d 7×7, InstanceNorm, LeakyReLU (256,256,64)
Conv 1-2 Conv2d 5×5, InstanceNorm, LeakyReLU (128,128,128)
Conv 1-3 Conv2d 5×5, InstanceNorm, LeakyReLU (64,64,256)

Conv redir Conv2d 1×1, InstanceNorm, LeakyReLU (64,64,32)
Correlation Correlation between (Conv 1-3, Conv 2-3) (64,64,441)

Concate Concate (Conv redir, Correlation) (64,64,473)
Conv 1-3-1 conv2d 3×3, InstanceNorm, LeakyReLU (64,64,256)
Conv 1-4 conv2d 3×3, InstanceNorm, LeakyReLU (32,32,512)

Conv 1-4-1 conv2d 3×3, InstanceNorm, LeakyReLU (32,32,512)
Conv 1-5 conv2d 3×3, InstanceNorm, LeakyReLU (16,16,512)

Conv 1-5-1 conv2d 3×3, InstanceNorm, LeakyReLU (16,16,512)
Conv 1-6 conv2d 3×3, InstanceNorm, LeakyReLU (8,8,1024)

Conv 1-6-1 conv2d 3×3, InstanceNorm, LeakyReLU (8,8,1024)

Target Encoder

Input 2 Input (512,512,83)
Conv 2-1 Conv2d 7×7, InstanceNorm, LeakyReLU (256,256,64)
Conv 2-2 Conv2d 5×5, InstanceNorm, LeakyReLU (128,128,128)
Conv 2-3 Conv2d 5×5, InstanceNorm, LeakyReLU (64,64,256)

Flow Estimation Module

Flow 6 Conv2d 3×3, input from Conv 1-6-1 (8,8,2)
Upsample 5 ConvTranspose2d 4×4, IN, LeakyReLU, input from Conv 1-6-1 (16,16,512)

Upsample 5-1 ConvTranspose2d 4×4, input from Flow 6 (16,16,2)
Concate 5 Concate (Conv 1-5-1, Upsample 5, Upsample 5-1) (16,16,1026)

Flow 5 Conv2d 3×3, inputs from Concate 5 (16,16,2)
Upsample 4 ConvTranspose2d 4×4, IN, LeakyReLU, input from Concate 5 (32,32,256)

Upsample 4-1 ConvTranspose2d 4×4, input from Flow 5. (32,32,2)
Concate 4 Concate (Conv 1-4-1, Upsample 4, Upsample 4-1) (32,32,770)

Flow 4 Conv2d 3×3, inputs from Concate 4 (32,32,2)
Upsample 3 ConvTranspose2d 4×4, IN, LeakyReLU, input from Concate 4 (64,64,128)

Upsample 3-1 ConvTranspose2d 4×4, input from Flow 4 (64,64,2)
Concate 3 Concate (Conv 1-3-1, Upsample 3, Upsample 3-1) (64,64,386)

Flow 3 Conv2d 3×3, inputs from Concate 3 (64,64,2)
Upsample 2 ConvTranspose2d 4×4, IN, LeakyReLU, input from Concate 3 (128,128,64)

Upsample 2-1 ConvTranspose2d 4×4, input from Flow 3 (128,128,2)
Concate 2 Concate (Conv 1-2, Upsample 2, Upsample 2-1) (128,128,194)

Flow 2 Conv2d 3×3, inputs from Concate 2 (128,128,2)
Upsample 1 ConvTranspose2d 4×4, IN, LeakyReLU, input from Concate 2 (256,256,32)

Upsample 1-1 ConvTranspose2d 4×4, input from Flow 2 (256,256,2)
Concate 1 Concate (Conv 1-1, Upsample 1, Upsample 1-1) (256,256,98)

Flow 1 Conv2d 3×3, inputs from Concate 2 (256,256,2)

Table 2. The architecture details of Pixel Flow Network (PFN).



GS (GT )
Layer Type Output Size

Encoder

Input Input (512,512,82(85))
Conv 1-1 Conv2d 7×7, InstanceNorm, ReLU (512,512,64)
Conv 1-2 Conv2d 3×3, InstanceNorm, ReLU (256,256,128)
Conv 1-3 Conv2d 3×3, InstanceNorm, ReLU (128,128,256)
Conv 1-4 Conv2d 3×3, InstanceNorm, ReLU (64,64,512)

Residual Blocks

Res 1-1 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 1-2 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 1-3 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 1-4 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 1-5 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 1-6 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)

Decoder

UpSample 1-1 ConvTranspose2d 3×3, InstanceNorm, ReLU (128,128,256)
Skip Connection 1 Skip Connection (Upsample 1, Conv 1-3) (128,128,512)

Conv 2-1 Conv2d 1×1, InstanceNorm, ReLU (128,128,256)
UpSample 1-2 ConvTranspose2d 3×3, InstanceNorm, ReLU (256,256,128)

Skip Connection 2 Skip Connection (Upsample 2, Conv 1-2) (256,256,256)
Conv 2-2 Conv2d 1×1, InstanceNorm, ReLU (256,256,128)

UpSample 1-3 ConvTranspose2d 3×3, InstanceNorm, ReLU (512,512,64)
Skip Connection 3 Skip Connection (Upsample 3, Conv 1-1) (512,512,128)

Conv 2-3 Conv2d 1×1, InstanceNorm, ReLU (512,512,64)
Conv 2-4 Conv2d 7×7, Tanh, input from Conv 2-3 (512,512,3)
Conv 2-5 Conv2d 7×7, Sigmoid, input from Conv 2-3 (512,512,1)
Conv 2-6 Conv2d 7×7, Sigmoid, input from Conv 2-3 (512,512,1)
Conv 2-7 Conv2d 7×7, Sigmoid, input from Conv 2-3 (512,512,1)

GB

Layer Type Output Size

Encoder

Input Input (512,512,4)
Conv 3-1 Conv2d 7×7, InstanceNorm, ReLU (512,512,64)
Conv 3-2 Conv2d 3×3, InstanceNorm, ReLU (256,256,128)
Conv 3-3 Conv2d 3×3, InstanceNorm, ReLU (128,128,256)
Conv 3-4 Conv2d 3×3, InstanceNorm, ReLU (64,64,512)

Residual Blocks

Res 2-1 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 2-2 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 2-3 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 2-4 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 2-5 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)
Res 2-6 Residual Block with Conv2d 3×3, InstanceNorm, ReLU (64,64,512)

Decoder

UpSample 2-1 ConvTranspose2d 3×3, InstanceNorm, ReLU (128,128,256)
UpSample 2-2 ConvTranspose2d 3×3, InstanceNorm, ReLU (256,256,128)
UpSample 2-3 ConvTranspose2d 3×3, InstanceNorm, ReLU (512,512,64)

Conv 4-1 Conv2d 7×7, Tanh (512,512,3)

Table 3. The architecture details of reconstruction generator GS , try-on generator GT , and background inpainter GB .



Figure 1. Examples of our collected Dance50k dataset covering diverse dance poses and a wide variety of garments.



Person Garment ADGAN LWG Ours Person Garment ADGAN LWG Ours

Figure 2. Qualitative comparisons on Dance50k. The first two columns represent the inputs, while the others are garment transfer results
from our method and the other two baselines (LWG [6] and ADGAN [7]. Ours contain richer texture details and more successfully transfer
the loose garments.



Garment Person Try-on 
(Upper)

Garment Person Try-on 
(Upper)

Garment Person Try-on 
(Upper)

Garment Person Try-on 
(Upper)

Garment Person Try-on 
(Lower)

Garment Person Try-on 
(Lower)

Garment Person Try-on 
(Lower)

Garment Person Try-on 
(Lower)

Figure 3. By setting appropriate protected body part, our model also supports single-item transfer.



Garment Person LWG wFlow Garment Person LWG wFlow Garment Person LWG wFlow

Figure 4. Visual Comparison on the iPER Dataset between wFlow and LWG [6]


