
A. Implementation Details
A.1. Datasets

CIFAR-100 [21] is composed of 60,000 color images
from 100 classes. Each class has 500 training and 100 eval-
uation samples with the size 32× 32.

ImageNet-Subset [7] is a subset of ImageNet [7], and it
includes 100 classes sampled in the same way as [17]. We
split each class into 500 training and 100 test samples with
the size 224× 224.

TinyImageNet [35] includes 100,000 samples for 200
classes, and each sample is downsized to 64 × 64. Each
class has 500 training and 50 test samples.

A.2. Experimental Settings

For the federated learning setting, in the first task, there
are total 30 local clients, and for each global round, we ran-
domly select 10 clients to conduct 20-epoch local training.
After the local training, these clients will share their up-
dated models to participate in the global aggregation of this
round. When the number of streaming tasks is T = 10,
for CIFAR-100 and ImageNet-Subset, each task includes
10 new classes for 10 global rounds, and each task tran-
sition will introduce 10 additional new clients. For Tiny-
ImageNet, each task includes 20 new classes for the same
10 global rounds, and each task transition also includes 10
new clients. Therefore, in the last task of T = 10, the total
number of local clients is 120, and we also randomly se-
lect 10 clients to perform global aggregation. For the case
of T = 20, each task has 5 classes with 10 global rounds
of training for CIFAR-100 and ImageNet-Subset, and the
number of classes will be 10 for TinyImageNet. Note that
the number of newly introduced clients is 5 now at each task
transition. We also conduct experiments of T = 5, CIFAR-
100 and ImageNet-Subset contain 20 classes for each task,
while TinyImageNet has 40 classes per task. For all three
datasets, each task covers 20 global rounds and there will be
20 new clients joining in the framework at each task tran-
sition. For building the non-i.i.d. setting, every client can
only own 60% classes of the label space in the current task,
and these classes are randomly selected. During the task
transition global round, we assume 90% existing clients are
from Sb, while the resting 10% clients are from So.

For fair comparisons with other class-incremental learn-
ing methods in the FCIL setting, we follow the same pro-
tocols proposed by [37, 49] to split classes into incremen-
tal tasks, utilize the identical class order generated from
iCaRL [37]. Moreover, we use ResNet-18 as the classifica-
tion model. As for the gradient encoding network, we use a
shallow LeNet with only 4 layers. We use a SGD optimizer
whose initial learning rate is 2.0 to train all classification
models, and the learning rate is divided by 5, 25 and 125
when the accumulated local epochs of a task hit 100, 150

and 180, respectively. What’s more, the optimizer of back-
propagation perturbation generation is SGD with learning
rate as 0.1, and the sample reconstruction optimization hap-
pened on the proxy server utilizes L-BFGS with learning
rate as 1.0 for saving memory storage. The batch size is
128, and the exemplar memory Ml of each client has the
sample size of 2,000 during all streaming tasks. As for the
optimization iterations, the prototype perturbation genera-
tion has 100 iterations, and prototype sample reconstruc-
tion conducts 200 iterations for each gradient. We repeat-
edly run our experiments for three times with three random
seeds (2021, 2022, 2023) and report the average results in
our comparison experiments.

A.3. Comparison Methods

This paper is the first exploration to address the feder-
ated class-incremental learning (FCIL) problem, and there
is not any baseline method that is built on similar settings.
Therefore, for fair comparisons, we compare our GLFC
model with several state-of-the-art class-incremental meth-
ods (i.e., iCaRL [37], BiC [49], PODNet [11], DDE [17],
GeoDL [43] and SS-IL [1] under the federated learning (FL)
settings, to validate the effectiveness of our proposed GLFC
model. Besides, top-1 accuracy metric is employed to eval-
uate the performance of other comparison methods and our
proposed GLFC model.

B. Optimization Pipeline of Our GLFC Model

Starting from the first incremental task, all clients are re-
quired to compute the average entropy of their private train-
ing data via Eq. (7) at the beginning of each global round,
and follow iCaRL [37] to update their exemplar memory
Ml. For each global training round, the central server
SG randomly selects a set of local clients to conduct local
training. After that, when the selected clients identify new
classes via the task transition detection strategy, they will
construct perturbed prototype samples of these new classes
and share the corresponding gradients to the proxy server
SP via the prototype gradient-based communication mech-
anism. After receiving these gradients, SP reconstructs
these prototype samples, and utilizes them to select the best
global model Θt until collecting gradients next time. Start-
ing from the second task (t = 2), SP will distribute best
models of the last and current task (i.e., Θt−1, and Θt) to se-
lected clients. Then the l-th client uses Θt−1 as its Θt−1

l to
update the current local model Θr,t

l via optimizing Eq. (6),
when it doesn’t detect new classes via task transition de-
tection. Otherwise, it can use Θt to train the current local
model Θr,t

l . Finally, SG aggregates the updated local mod-
els Θr,t

l to get the global model Θr+1,t of next ground. The
detailed optimization pipeline is provided in Algorithm 1.



Algorithm 1: Optimization Pipeline of Our Model.
Given: At the r-th global round and the t-th task (assume
t ≥ 2), central server SG randomly selects a set of
clients {Ss1 ,Ss2 , ...,Ssm} with size as m; The selected
clients have their local training data
{T t

s1 , T
t
s2 , · · · , T

t
sm} and local exemplar memories

{Ms1 ,Ms2 , · · · ,Msm}; SG sends the latest global
classification model Θr,t to all selected clients; The
gradient encoding model Γ and the proxy server SP ;

All Clients:
for Sl in {S1,S2, · · · ,SK} do

Use T t
l to compute average entropyHr,t

l via Eq. (7);
Apply iCaRL [37] on T t

l to updateMl;
Selected Clients:
Receive Θr,t from SG as local classification model;
Receive Θt−1,Θt from SP ;
for Sl in {Ss1 ,Ss2 , · · · ,Ssm} do

Task = False;
ifHr,t

l −H
r−1,t
l ≥ rh then

Task = True;

if Task = True then
Θt−1

l = Θt;

else
Θt−1

l = Θt−1;

for {Xt
lb,Y

t
lb} in T t

l ∪Ml do
Update local model Θr,t

l via optimizing Eq. (6);

if Task = True then
∇Γt

l = {};
for c in [Cp

l + 1, Cp
l + Ct

l ] do
Generate perturbed sample (xt

lc∗ ,y
t
lc∗);

Compute gradient∇Γlc =
∪Wi∇WiDCE(P

t
l (x

t
lc∗ ,Γ),y

t
lc∗);

∇Γt
l ← ∇Γt

l ∪∇Γlc

Send∇Γt
l to the proxy server SP ;

Proxy Server:
Receive∇Γt = {∇Γt

s1 ,∇Γ
t
s2 , ...,∇Γ

t
sm} from selected

local clients, and there are N t
g gradients in∇Γt;

Receive Θr,t from SG as local classification model;
if N t

g ̸= 0 then
Shuffle the gradient pool∇Γt;
{X̄t

P ,Y
t
P } = {};

for n = 1, · · · , N t
g do

Reconstruct x̄t
n via optimizing Eq. (9);

{X̄t
P ,Y

t
P } ← {X̄t

P ,Y
t
P } ∪ (x̄t

n,y
t
n);

Forward {X̄t
P ,Y

t
P } to Θr,t and get the best Θt;

Distribute Θt−1 and Θt to all selected local clients;

C. Experiments on TinyImageNet Dataset

C.1. Performance Comparison

As shown in Tables 5, 6, we present comparison ex-
periments between our model and other baseline class-

incremental learning methods on TinyImageNet dataset.
The presented results show that our GLFC model signifi-
cantly outperforms other state-of-the-art comparison meth-
ods by 4.7%∼11.0% in terms of average accuracy. It il-
lustrates the effectiveness of our model to address both lo-
cal and global catastrophic forgetting in the FCIL setting.
Moreover, the performance of our model is the best among
all incremental tasks, and there is a large performance im-
provement for each incremental task. This phenomenon
validates that the proposed proxy server is effective to ad-
dress global catastrophic forgetting brought by non-i.i.d.
class imbalance across clients via prototype sample con-
struction mechanism. Meanwhile, the proposed class-aware
gradient compensation loss and class-semantic relation dis-
tillation loss guarantee that our model could effectively al-
leviate local catastrophic forgetting at local client side.

C.2. Ablation Studies

This subsection investigates the effectiveness of differ-
ent variants of our model on TinyImageNet dataset, as pre-
sented in Tables 5, 6. When compared with Ours, Ours-
w/oCGC degrades the performance of 2.7%∼2.8% in terms
of average accuracy, which validates the effectiveness of the
class-aware gradient compensation loss to compensate im-
balanced gradient propagation. We observe that Ours per-
forms better than Ours-w/oCRD by 10.1%∼10.2% in terms
of average accuracy. The class-semantic relation distillation
loss ensures inter-class semantic consistency across differ-
ent incremental tasks to address local catastrophic forget-
ting. Moreover, the performance of Ours-w/oPRS is worse
than Ours by 3.2%∼4.6% in terms of average accuracy.
This performance degradation verifies that global catas-
trophic forgetting brought by non-i.i.d. class imbalance
across clients could be effectively addressed via the proxy
server. All proposed modules in our GLFC model could co-
operate well to address the FCIL problem. When any one
of proposed components is removed, as shown in Tables 5,
6, Ours-w/oCGC, Ours-w/oCRD and Ours-w/oPRS achieve
significant performance degradation.

C.3. Effects of Incremental Tasks

As presented in Tables 7, 8, in this subsection, we in-
troduce the qualitative analysis of various incremental tasks
(T = 5, 10) on TinyImageNet dataset to validate the ef-
fectiveness of the proposed GLFC model. From the re-
sults in Tables 7, 8, we observe that the performance of our
proposed model has a large improvement (3.2%∼10.0% in
terms of average accuracy) over other state-of-the-art com-
parison methods for all incremental tasks. Even though
there are different settings with different number of tasks
(T = 5, 10), our proposed GLFC model still has the best
performance, which verifies that our model could effec-
tively tackle both local and global catastrophic forgetting in



Table 5. Comparisons of the first 10 tasks between our model and other baseline methods on TinyImageNet [35] with 20 incremental tasks.
Methods 10 20 30 40 50 60 70 80 90 100 Avg. △

iCaRL [37] + FL 67.0 59.3 54.0 48.3 46.7 44.7 43.3 39.0 37.3 33.0 47.3 ⇑7.6
BiC [49] + FL 67.3 59.7 54.7 50.0 48.3 45.3 43.0 40.7 38.0 33.7 48.1 ⇑6.8

PODNet [11] + FL 69.0 59.3 55.0 51.7 50.0 46.7 43.7 41.0 39.3 38.0 49.4 ⇑5.5
DDE [17] + iCaRL [37] + FL 70.0 59.3 53.3 51.0 48.3 45.7 42.3 40.0 38.0 36.3 48.4 ⇑6.5

GeoDL [43] + iCaRL [37] + FL 66.3 56.7 51.0 49.7 44.7 42.3 41.0 39.0 37.3 35.0 46.3 ⇑8.6
SS-IL [1] + FL 66.7 54.0 47.7 45.3 42.3 42.0 40.7 38.0 36.0 34.3 44.7 ⇑10.2
Ours-w/oCGC 67.7 60.3 57.7 55.0 51.0 49.0 48.0 45.7 44.3 42.0 52.1 ⇑2.8
Ours-w/oCRD 68.0 60.0 53.0 47.3 42.0 39.0 37.3 35.3 33.7 32.0 44.8 ⇑10.1
Ours-w/oPRS 67.3 59.7 55.0 51.3 50.7 48.0 46.3 43.3 41.7 40.3 50.3 ⇑4.6

Ours 68.7 63.3 61.7 57.3 56.0 53.0 50.3 47.7 46.3 45.0 54.9 –

Table 6. Comparisons of the last 10 tasks between our model and other baseline methods on TinyImageNet [35] with 20 incremental tasks.
Methods 110 120 130 140 150 160 170 180 190 200 Avg. △

iCaRL [37] + FL 32.0 30.3 28.0 27.0 26.3 25.3 24.7 24.0 22.7 22.0 26.2 ⇑11.0
BiC [49] + FL 32.7 32.3 30.3 29.0 27.7 27.3 26.0 25.7 24.3 23.3 27.9 ⇑9.3

PODNet [11] + FL 37.0 35.7 34.7 34.0 33.0 32.3 31.0 30.0 29.3 28.0 32.5 ⇑4.7
DDE [17] + iCaRL [37] + FL 35.0 33.7 32.0 31.0 30.3 30.0 28.7 28.3 27.3 26.0 30.2 ⇑7.0

GeoDL [43] + iCaRL [37] + FL 33.7 32.0 31.0 30.3 28.7 28.0 27.3 26.3 25.0 24.7 28.7 ⇑8.5
SS-IL [1] + FL 33.0 31.0 29.3 28.3 27.7 27.0 26.3 26.0 25.0 24.3 27.8 ⇑9.4
Ours-w/oCGC 40.7 38.3 37.3 36.0 35.3 33.7 33.0 31.7 30.3 29.0 34.5 ⇑2.7
Ours-w/oCRD 30.7 29.7 29.3 28.0 27.7 27.0 25.7 25.0 24.0 22.7 27.0 ⇑10.2
Ours-w/oPRS 39.0 38.0 37.3 36.3 34.7 33.3 31.7 31.0 30.3 28.7 34.0 ⇑3.2

Ours 42.7 41.0 40.0 39.3 38.0 36.7 35.3 34.0 33.0 31.7 37.2 –

Table 7. Performance comparisons between our model and other baseline methods on TinyImageNet [35] with 10 incremental tasks.
Methods 20 40 60 80 100 120 140 160 180 200 Avg. △

iCaRL [37] + FL 63.0 53.0 48.0 41.7 38.0 36.0 33.3 30.7 29.7 28.0 40.1 ⇑7.8
BiC [49] + FL 65.3 52.7 49.3 46.0 40.3 38.3 35.7 33.0 31.7 29.0 42.1 ⇑5.8

PODNet [11] + FL 66.7 53.3 50.0 47.3 43.7 42.7 40.0 37.3 33.7 31.3 44.6 ⇑3.3
DDE [17] + iCaRL [37] + FL 69.0 52.0 50.7 47.0 43.3 42.0 39.3 37.0 33.0 31.3 44.5 ⇑3.4

GeoDL [43] + iCaRL [37] + FL 66.3 54.3 52.0 48.7 45.0 42.0 39.3 36.0 32.7 30.0 44.6 ⇑3.3
SS-IL [1] + FL 62.0 48.7 40.0 38.0 37.0 35.0 32.3 30.3 28.7 27.0 37.9 ⇑10.0

Ours 66.0 58.3 55.3 51.0 47.7 45.3 43.0 40.0 37.3 35.0 47.9 –

the FCIL setting. Moreover, the significant performance im-
provement illustrates that our model enables multiple local
clients to learn new classes consecutively, while addressing
catastrophic forgetting on old learned classes under the pri-
vacy preservation and limited memory of local clients.

D. Qualitative Analysis of Exemplar Memory
In this subsection, as shown in Table 9, we further con-

duct extensive experiments (T = 10) on CIFAR-100 dataset
to investigate the effects of different exemplar memories on
the performance of our proposed GLFC model when set-
ting Ml as {500, 1000, 1500, 2000}. From the presented
results in Table 9, we easily observe that our model achieves
the better performance for all incremental tasks, when lo-
cal clients have large memory storage to store the exem-
plar samples of old classes. Moreover, storing more training
data of old classes at the local side could promote the mem-
ory replay on old classes, which further addresses catas-
trophic forgetting at local clients’ side for old classes. Be-

sides, it validates that our proposed model is efficient to dis-
tinguish new classes via the task transition detection strat-
egy and update the corresponding exemplar memoryMl at
local side. The updated exemplar memory plays an essential
role in tackling local catastrophic forgetting on old classes.

E. Limitation and Societal Impact
This section discusses the limitation for our proposed

model and the potential societal impact of this paper.

E.1. Limitation

This paper mainly focuses on addressing Federated
Class-Incremental Learning (FCIL) problem from the al-
gorithm perspective. In the future, it is necessary to de-
velop mathematical theoretical supports for understanding
the FCIL problem and the proposed GLFC model. A pos-
sible way to develop mathematical theories for our model
is considering existing mathematical explanations of fed-
erated learning (FL) and class-incremental learning (CIL)



Table 8. Performance comparisons between our model and other baseline methods on TinyImageNet [35] with 5 incremental tasks.
Methods 40 80 120 160 200 Avg. △

iCaRL [37] + FL 65.0 48.0 42.7 38.7 35.0 45.9 ⇑5.2
BiC [49] + FL 65.7 48.7 43.0 40.3 35.7 46.7 ⇑4.4

PODNet [11] + FL 66.0 50.3 44.7 41.3 37.0 47.9 ⇑3.2
DDE [17] + iCaRL [37] + FL 63.0 51.3 45.3 41.0 36.0 47.3 ⇑3.8

GeoDL [43] + iCaRL [37] + FL 65.3 50.0 45.0 40.7 36.0 47.4 ⇑3.7
SS-IL [1] + FL 65.0 42.3 38.3 35.0 30.3 42.2 ⇑8.9

Ours 66.0 55.3 49.0 45.0 40.3 51.1 –

Table 9. Qualitative analysis of different exemplar memories in local clients on CIFAR-100 [21] when T = 10.
Ml 10 20 30 40 50 60 70 80 90 100 Avg.
500 90.0 74.3 66.0 58.3 52.0 51.0 43.0 42.0 40.0 39.3 55.6

1000 89.0 78.3 72.0 64.3 59.7 59.0 52.3 49.3 48.7 47.7 62.0
1500 89.3 82.0 76.0 70.0 64.0 64.0 56.3 52.7 49.3 48.7 65.2
2000 90.0 82.3 77.0 72.3 65.0 66.3 59.7 56.3 50.3 50.0 66.9

simultaneously. However, as we know, there is rare theo-
retical analysis about CIL. Therefore, it might be tough to
propose a brand-new theoretical support to analyze regular
CIL problem. Instead, we will try to establish a theoretical
analysis for the FCIL problem from a FL perspective in the
future work.

E.2. Potential Societal Impact

The FCIL problem discussed in our paper doesn’t have
any negative societal impact. On the contrary, we believe
our work can solve real-world problems and bring about
extensive benefits. In comparison with standard federated
learning (FL), the proposed Federated Class-Incremental
Learning (FCIL) is more practical as we assume the data of
new classes as well as new clients will indiscriminately and
continuously participate in FCIL. To solve the FCIL prob-
lem, our proposed GLFC model can enable a global class-
incremental learning model to be trained on decentralized
devices without data sharing (uploading decentralized data
to a central server or data exchange between participated
devices). Compared to regular class-incremental learning
methods that always need access to the training data, FCIL
can protect the private information of participants by re-
maining the local data where it is collected.

We have faith that the proposed GLFC model can bring
beneficial gains to a number of information-sensitive sce-
narios, such as medical diagnosis, smartphone applica-
tions, pharmaceutical companies, and high-technology en-
terprises, etc. In summary, this work is the first attempt to
learn a global class-incremental model in the setting of FL,
which expedites the development of FL-based applications
with the requirement of privacy preservation.


