
A. Extra Results Using Different In-
Distribution Datasets

We further evaluate our method on various in-
distribution datasets including SVHN and CIFAR-100
in Tab. 3 using the same setting as Fig. 4. According to
Fig. 4, our method achieves state-of-the-art results with var-
ious in-distribution datasets.

In-dist. (model) OOD Baseline [37] ODIN [55] Maha. [51] Ours-LR

CIFAR-100
(ResNet-34)

SVHN 79.5 70.7 92.4 94.2
LSUN-C 75.8 85.6 98.2 99.9

ImageNet-C 77.2 87.8 98.0 99.9

SVHN
(ResNet-34)

CIFAR-10 92.9 92.1 99.3 99.8
LSUN-R 91.6 89.4 99.9 99.9

ImageNet-R 93.5 92.0 99.9 99.9

CIFAR-100
(DenseNet-100)

SVHN 82.7 85.2 90.3 93.3
LSUN-C 70.8 85.5 98.0 99.9

ImageNet-C 71.6 84.8 94.1 99.6

Table 3. AUROC comparison of detection methods on various in-
distribution datasets.

B. Lightweight OOD Detector

• Logistic regression (LR) is a kind of classic machine
learning model for binary classification. Given an input
vector, The LR model performs a dot product on the in-
put with the learned coefficient vector and outputs the
prediction score after applying the sigmoid function. A
LR model can be trained efficiently by several solvers
like LBFGS. [52] We use the default hyper-parameters
in sklearn [1] for training of LR detector.

• The multilayer perceptron (MLP) we use consists of
three full-connected layers following by non-linear acti-
vation function ReLU. We adapt dropout after the sec-
ond full-connected layer and train the MLP with SGD
optimizer. As a non-linear model, MLP is able to learn
more complex correlation among elements in the input
than LR. In practise, we find that MLP has slightly better
detection performance than LR, while, with higher over-
fitting possibility when the number of training examples
is limited. We training the MLP using SGD with 0.001
learning rate and 0.9 momentum.

The adapted OOD detector is lightweight. For instance,
Our LR model has 8k parameters and 16k FLOPs, signifi-
cantly smaller than the pre-trained model (e.g., ResNet-34
with ∼2×104k parameters and ∼2×106k FLOPs).

C. Architecture of ConvNet

Consistent to the setting of [44], we use a simple Con-
vNet in Sec. 5.1 and Tab. 1. ConvNet’s architecture is sum-
marized in Tab. 4.

Layer Configuration

Conv1 (3, 300, kernel size=4, stride=1)
Conv2 (300, 300, kernel size=4, stride=2)
Conv3 (300, 300, kernel size=4, stride=2)
Conv4 (300, 300, kernel size=3, stride=2)

AvgPool (kernel size=2)
FC (300, 10)

Table 4. Architecture of ConvNet following [44]. After each con-
volutional layer, batch normalization and ReLU layers are applied.

D. Pre-trained or Un-trained Models?
In Fig. 3, we show that the average of elements’ magni-

tude in NMD vector from a pre-trained ResNet-34 can be
used as OOD score to reliably distinguish OOD batches.
Such a proof-of-concept example validates that the off-
shelf-shelf pre-trained model can be used as a qualified
witness function. Based on this interesting and supervis-
ing finding, we believe the off-the-shelf model itself should
contain sufficient information about the training data dis-
tribution because it was trained to capture training data’s
features.

To further validate our hypothesis, we replace the pre-
trained ResNet-34 with an un-trained ResNet-34 and re-run
the experiment. As shown in Fig. 8, an un-trained ResNet-
34 cannot act as a qualified witness function to detect OOD
batches even the batch size is 8.

E. Neural Variance Discrepancy
As mentioned in Sec. 5.7, one can define Neural Vari-

ance Discrepancy (NVD) by computing the activation’s
second-order statistics in a similar manner as NMD,

NVDl
c(I) =

√
σ2[f lc(I)]−

√
σ2[f lc(Dtr)] , (9)

where the second term can be approximated by BN’s run-
ning average variance. Interestingly, NVD-based detec-
tion (i.e., NVD-MLP) achieves a comparable detection per-
formance as NMD.

We further combine NVD and NMD via concatenating
them together. Since elements in NVD and NMD may have
different magnitude, we adopt the standardizer from
sklearn to remove the mean and scale to unit variance
for each dimension of NVM and NMD vectors before con-
catenating. Combining NMD and NVD obtains a slightly
better detection result although extra computation overhead
is introduced.

F. Crafting OOD Data by Pixel Permuting
As discussed in Sec. 5.3, if no OOD example is accessi-

ble, we craft artificial OOD examples by randomly permut-



100 batches

CIFAR (in-dist.)

SVHN (OOD) PGD (adv. attack)

CIFAR (in-dist.)

100 batches

100 batches 100 batches

ResNet-34 pre-trained on in-distribution data

ResNet-34 w/ random initialization 

Figure 8. We redo the proof-of-concept experiment in Fig. 3 with an un-trained ResNet-34. The batch size is 8.

ing pixels of in-distribution examples and use the crafted
OOD examples to guide our detector for finding the deci-
sion boundary. The premise of using crafted OOD example
is that the method has high generalizability across datasets
(i.e., for unseen OOD data) as validated in Sec. 5.5. Specifi-
cally, we do pixel permuting in the block granularity instead
of in the pixel granularity [73] to avoid tuning the hyperpa-
rameter “mutation rate”. Taking CIFAR-10 example as an
example, we split an image into 16 non-overlapping (8× 8)
blocks and randomly permute their positions. Results of
detection performance without OOD examples are shown
in Fig. 5 and Tab. 6.

G. Training and Inference Efficiency
In Sec. 5.6, we compare the training and inference

costs of the proposed Ours-MLP with baselines as shown
in Fig. 1. Training and inference time are measured on a
machine with one NVIDIA GPU 1080 Ti and a Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz. Some approaches
conduct model fine-tuning using MIT 80 Million Tiny Im-
ages Dataset which is not available any more. For those
methods, we use the target OOD dataset (i.e., CIFAR-100
training set) to do fine-tuning but with the same number of
iterations as using MIT 80 Million Tiny Images Dataset.
For methods which require repeating experiments for sev-
eral times to search hyper-parameters, we count all such
time into training time. To measure the inference latency,
we repeat single example detection for 10,000 times and
compute the average inference time for a single example.

A recent study, MOOD [56], achieves state-of-the-art in-
ference efficiency leveraging early exiting [3]. We do not
include MOOD in Tab. 5 because it depends a special ar-
chitecture with dynamic exits. In addition, our method is
orthogonal to MOOD and could be combined for a future
work as discussed in Secs. 5.7 and 7.

Method Fine-tuning Training Inference

Gram True 330s 0.37s
Maha False 1397s 25.7ms
ODIN False 1270s 16.0ms

G-ODIN True 1830s 22.1ms
OE True 560s 6.72ms

GOOD True 756m 47.4ms
ACET True 201m 6.89ms

Energy-FT True 620s 7.24ms

Plain ResNet-34 - - 6.72ms

Ours-MLP False 94s 7.54ms

Table 5. Training and inference time comparison with CIFAR-
10against CIFAR-100 (OOD) detection on ResNet-34. (Also
see Fig. 1)



In-dist
(model) OOD Energy (w/o FT) Gram (w/o FT) G-ODIN (w/ FT) 1D (w/ FT) Ours-MLP (w/o FT)

TNR at TPR 95% / AUROC / Detection acc.

CIFAR-10
(ResNet-34)

iSUN 60.4 / 92.2 / 87.0 99.3 / 99.8 / 98.1 95.3 / 98.9 / 95.6 76.9 / 86.3 / 92.9 99.7 / 99.9 / 98.6
SVHN 58.4 / 90.6 / 85.5 97.6 / 99.5 / 96.7 89.5 / 97.8 / 92.9 86.2 / 95.1 / 88.9 97.7 / 99.6 / 96.6
Texture 41.1 / 85.5 / 80.8 88.0 / 97.5 / 91.9 81.4 / 95.0 / 88.9 72.4 / 91.1 / 84.9 94.0 / 98.9 / 94.6

LSUN-C 89.2 / 98.0 / 93.8 89.8 / 97.8 / 92.6 93.9 / 98.8 / 94.0 77.1 / 92.9 / 86.5 93.9 / 98.8 / 94.5
ImageNet-C 67.4 / 93.6 / 88.7 96.7 / 99.2 / 96.1 90.8 / 98.2 / 94.3 81.9 / 94.6 / 88.5 96.1 / 99.2 / 95.6
CIFAR-100 43.1 / 87.1 / 80.7 32.9 / 79.0 / 71.7 36.3 / 85.5 / 79.3 57.4 / 87.2 / 80.8 63.8 / 90.1 / 83.4

Table 6. Comparison of detection methods when only in-distribution dataset is accessible. (Also see Fig. 5)


	. Introduction
	. Preliminary
	. Out-of-distribution (OOD) detection
	. Integral probability metrics

	. Our approach
	. Neural Mean Discrepancy
	. A proof of concept
	. A sensitivity-aware NMD detector

	. Experimental setup
	. Results
	. Comparison with statistical baselines
	. Comparison with other baselines
	. Learning with only in-distribution examples
	. Few-shot OOD training
	. Generalizability across models and datasets
	. Training and inference efficiency
	. Ablation study

	. Related work
	. Conclusion and discussion
	. Extra Results Using Different In-Distribution Datasets
	. Lightweight OOD Detector
	. Architecture of ConvNet
	. Pre-trained or Un-trained Models?
	. Neural Variance Discrepancy
	. Crafting OOD Data by Pixel Permuting
	. Training and Inference Efficiency



