A. Multi-View Classification Dataset

We also evaluate SplitNets on a multi-view system with
ModelNet 3D Warehouse classification dataset that consists
of 12,311 CAD models from 40 categories. CAD models
in this benchmark come from 3D Warehouse [1]. For each
object, 12 views are obtained by rotating the object every 30
degrees along the gravity direction. Using multiple views is
necessary to obtain high classification accuracy according
to prior work [16]. We use the same training and testing
split as in [57]. For our experiments, the reported metric is
per-class accuracy.

B. Interlacing Concatenation for View Fusion

In Section 3.1.3, we introduce a splitting module for
multi-view systems, consisting of two layers Conv-Reduce
and View-Fuse. Since we mainly focus on searching the
position of View-Fuse (i.e., the position of splitting mod-
ule), we introduce a simple fusion operation - concatena-
tion. More specifically, we concatenate features from V'
views in an interlacing way along the channel dimension
as illustrated in Figure 10. In the interlacing concatenation,
we first concatenate the first channel from V' views, then re-
peat the same operation for the second channels, and so on.
We adopt interlacing concatenation because the number of
channels of each view is dynamically sampled during train-
ing and interlacing concatenation guarantees that the i-th
channel of the fused features is always from the (: mod V')-
th view.

C. Supernet Configuration

As we mentioned in Section 3, We build the supernet’s
search spaces mainly based on [, 54] with some extra
search spaces from our SA-NAS as shown in Figure 3.
Search spaces from standard NAS [9, 54] include number of
layers, output channel size and expand ratio of each inverted
residual block (MB). Following [9, 54], we use Swish as
activation function. The supernet architecture configuration
and search space for single-view SplitNets on ImageNet are
summarized in Table 7.

D. Sampling Strategy of Splitting Modules for
Supernet Training

D.1. Single-View SplitNets

In supernet training, we jointly train multiple sub-
networks sampled from the supernet at each iteration. Vari-
ous sampling strategies can be used [5, 9, 54, 60]. For exam-
ple, BigNAS [60] samples three kinds of networks: 1) the
largest sub-network (“max”); 2) the smallest sub-network
(“min”); 3) several randomly sub-sampled networks. Since
the largest sub-network usually has better accuracy, it can be

Dynamic reduced
View-1—> 0“ -sen

\\d #channels: d
sub-network

View-2—> On -sen On -agg .
sub-network r sub-networ

Fused features

via concatnation
On -sen

View-3— sub network
Figure 10. Illustration of interlacing concatenation. Interlacing
concatenation guarantees that the ¢-th channel of the fused features

is always from the (¢ mod V')-th view. In the example of this
figure, V = 3.

used as teacher to supervise other sub-networks via knowl-

edge distillation losses [23]. Some variants of this “sand-

wich” sampling strategy are also proposed like sampling

sub-networks according to their predicted accuracy [54].
Compared with previous work, we have different inter-

ests on sub-networks. Eventually, we want to find the op-

timal architecture with exact one splitting module. How-
ever, as an information bottleneck, splitting module will in-
evitably introduce accuracy degradation. During training,
we aim to minimize this degradation by improving the ac-
cuacy lower bound. We insert multiple splitting modules to
help sub-networks increase tolerance of splitting modules.

Inspired by BigNAS [60] and AttentiveNAS [54], we sam-

ple five sub-networks per iteration to train jointly.

1. “Max with zero hot”: The largest sub-network without
splitting module can be treated as the best Pareto archi-
tecture. Training this sub-network helps improve the ac-
curacy upper bound of all sub-networks.

2. “Max with all hot”: The largest sub-network with all
N splitting modules contains all weights in the super-
net. Training this sub-network ensures all weights are
updated at least once per iteration.

3. “Min with zero hot”: The smallest sub-network with-
out splitting module contains weights which are shared
across all sub-networks. Training this sub-network helps
the optimization of the most frequently shared weights.

4. “Min with all hot”: The smallest sub-network with all
N splitting modules can be treated as the worst Pareto
architecture. Training this sub-network helps improve
the accuracy lower bound of the all sub-networks.

5. ‘Random with one hot”: A randomly sampled sub-
network with exact one splitting module is the sub-
network we are interested in during the second stage and
final deployment.

Input Resolution {192, 224, 256, 288}
Model Phase Block NAS Search Space SA-NAS Search Space
. . Depth Before | Depth After Reduced
Model Phase Block Channel Expansion Ratio Split Module | Split Module | channel d Module
- Conv {16,24} {1} - - -
MBConv-1 {16,24} {1}
Phase 1 MBConv2 (2432 [45.6) {2,3,4,5} {1,2,3} {4,6,8}
Phase 2 MBConv-3 {32,40} {4,5,6} {1,2,3} {1,2,3} {6,8,10}
MBConv-4 {64,72} {4,5,6}
Phase 3 MBConv3 (112,120,128} (4.5.6) {1,2,3} {4,5,6,7,8,9} {10,14,18}
MBConv-6 | {192,200,208,216} {6}
Phase 4 MBConv=7 (216224 {6} {1,2,3,4} {2,3,4,5,6} {16,24,32}
- MBPool {1792,1984} {6} - - -

Table 7. The supernet architecture configuration and search spaces for single-view SplitNets on ImageNet.

(e}
o
\

o))
o
T

754

Max with zero hot
Max with all hot 0
Min with zero hot

>

Top-1 Acc (%)
N
o

201 Min with all hot | g5
A Sub-network 358 360
0t . L L
0 100 200 300
Epoch

Figure 11. Training curves of four different sub-networks sampled
from the supernet for single-view SplitNets. “max” (or “min”) in-
dicts the maximum (or “minimum”) sub-network sampled from
the supernet. “all hot” (or “zero hot”) means that the sampled
sub-network contains all possible (or none of) splitting modules.
The drop of performance introduced (green line against orange
line and blue line against magenta line) by inserting splitting mod-
ule is mitigated. The red triangles are sampled sub-networks with
one splitting module (i.e., “Random with one hot”). The green
and pink lines can be treated as the upper and lower bounds of
sub-networks.

We visualize training curves of aforementioned sub-
networks in Figure 11. The red triangles are some sampled
sub-networks with one splitting module. Their accuracy is
bounded by the “Max with zero hot” and “Min with all hot”
sub-networks.

In addition, we compare our new sampling strategy
against the baseline “sandwich” sampling strategy, which
replaces “Max with all hot” (and “Min with all hot”) with
“Max with one hot” (and “Min with one hot”) during super-
net training. From Figure 12, we find that sampling more
than one splitting modules during training helps reduce
accuracy drop introduced by splitting modules in Split-
Nets. For example, the discrepancy between solid blue and
pink lines is significantly smaller than discrepancy between

80r

[e)] ~ ~
u o (6]
T T T

Top-1 Acc (%)
(6] (o))
(6,] o

Max with zero hot

501
Max with all hot
45t Min with zero hot
Min with all hot
4075 100 200 300
Epoch

Figure 12. Comparison between our new sampling strategy (solid
lines) and baseline “sandwich” sampling strategy (dashed lines)
for single-view SplitNets as elaborated in Appendix D.1. Our new
sampling strategy helps reduce accuracy drop in SplitNets due to
splitting modules. For example, the discrepancy between solid
blue and pink lines is significantly smaller than discrepancy be-
tween dashed blue and pink lines.

dashed blue and pink lines.

D.2. Multi-View SplitNets

For multi-view SplitNets, each splitting module contains
a fusion operation which can only be performed once for
one network. So we are not able to sample more than one
splitting modules during neither supernet training nor archi-
tecture searching. We use the baseline “‘sandwich” sampling
strategy for multi-view SplitNets.

E. Analysis of Different Initializations

As we discussed in Section 3.1.3, both forward and back-
ward passes of a convolution layer can be expressed by con-
volution operations. The goal of initialization is to ensure
the magnitude of output (and gradient) does not explode
during forward (and backward) pass as shown in the fol-
lowing two equations,

CONViorward (W ,Xl) =Y~ N(07 1) (2)
oL oL
V‘/ T _— = —
COvaackward (9 ayl) 6Xl N(07 1)7 (3)

where we assume the activation function as ReLU [22],
x;+1 = max(y;,0). Solving Equation (2) or Equation (3)
leads to Kaiming Fan-In or Kaiming Fan-Out [21],

2
W ~ =
N(O; k'Q-Cin)

wwx/(o 2

3
k2 * Cout

(FAN-IN) 4)
) (FAN-OUT), (@)

where k is kernel size and ¢, (and coy4) is the input (and
output) channel size.

In a splitting module, the difference between input and
output channel sizes is usually enormous. For example, in
a certain Conv-Reduce, we have ¢;,, = 256 and ¢, = 8. In
this case, Fan-In mode’s weights variance is % = 32 times
larger than Fan-Out’s. Choosing either Fan-In or Fan-Out
will cause the other one’s variance too large or too small.
Although Xavier [17]’s arithmetic average of ¢, and coyt
may mitigate this issue, it is far from enough because arith-
metic average between two numbers is dominated by the
larger one, 0.5 - (256 + 8) > 8.

Our split-aware initialization adopts geometric average
instead of arithmetic average to make a better balance be-
tween forward and backward, /ci, - Cous. In the next sec-
tion, we empirically show that supernet training can benefit
from our split-aware initialization.

F. Empirical Comparison of Different Initial-
izations

We compare our split-aware initialization against Kaim-
ing initialization (Fan-In) on “Max with all hot” sub-
network’s accuracy for ImageNet in Figure 13. Our split-
aware initialization improves training stability as well as fi-
nal accuracy (by 0.3%). In addition, if the base learning
rate (0.05 in Figure 13) is slightly increased, conventional
initialization will lead to divergence in training.

G. Hardware Modeling

As discussed in Section 3.2, we use a hardware simu-
lator customized for a realistic head mounted device. The

80
75¢
X 70
Y65t . e . oy
& training instability
~ 60} ©)
2 55¢
2 o Split-Aware Init.
500 © Kaiming Init.
4> 100 200 300
Epoch

Figure 13. Accuracy comparison between Kaiming and our split-
aware initalizations on the “Max with all hot” sub-network.

on-sen. processor is equipped with a 16nm neural process-
ing unit (NPU) with peak performance of Comp,_, = 125
GOP/s. So, the latency of on-sensor part (in Equation (1))
can thus be approximately computed via Tsen(fsen,X) =
OP(fsen,x)/ Comp,,.,, where OP(:,-) is the profiling
function through cycle-accurate simulation for measuring
the number of operations given model and input. In addi-
tion, the on-sen. processor’s peak memory is Memg., = 2
MB. Thus, the peak memory consumption of the on-sen part
cannot exceed this peak memory constraint M (fsen,x) <
Memg.,. When computing the peak memory consump-
tion (M (-,-)), we consider the memory of both weights
and activations: M (fsen,X) = My(fsen) + Ma(fsen, X),
where My (fsen) is the memory consumption for storing all
weights of fsen and My (fsen,X) measures the peak mem-
ory consumption of activation taking residual connections
into consideration. In this work, we consider homogeneous
sensors which can represent most of AR/VR devices like
Quest2 [2]. We leave the extension of SplitNets as a future
work when heterogeneous sensors occur.

H. Adaptability of SplitNets

As we discussed in Section 3, two-stage NAS decouples
the supernet training (stage 1) and architecture searching
(stage 2). As a result, when the hardware configuration
changes, one just needs to rerun the stage 2 without retrain-
ing the supernet. In this section, we change the hardware
configuration and observe how the searched architectures
evolve to fit the change of hardware configuration. Specif-
ically, we increase the computation capability of on-sen.
processors by four times and show the change of architec-
tures with the best accuracy for the multi-view task in Fig-
ure 14. The left architecture is the best network for the
default hardware configuration (Comp,., = 125 GOP/s)
from Table 6 (SplitNets-C). If on-sen. processors’ peak
computation performance is increased by 4x, SA-NAS can

If sensors' peak
performance

mcreased .
{1k ||
.

R
w

64—6 216—14

Figure 14. Evolution of the best architectures when on-sen. pro-
cessor’s peak computation performance increases. SA-NAS can
automatically put more and wider layers on sensors.

automatically put more and wider layers on-sen. and reduce
the number of on-agg. layers to make a better trade-off. The
network on the right achieves a better performance (94.0%
top-1 accuracy) and lower latency (0.62 ms) compared with
the left one.

	. Introduction
	. Background and Related Work
	. Split-Aware NAS
	. Building and Training Supernet (Stage 1)
	SA-NAS for Single-View SplitNets
	SA-NAS for Multi-View SplitNets
	Architecture of Splitting Module

	. Resource-constrained searching (Stage 2)

	. Results
	. Single-view Task: ImageNet
	. Multi-view Task: 3D Classification

	. Conclusion and Discussion
	. Multi-View Classification Dataset
	. Interlacing Concatenation for View Fusion
	. Supernet Configuration
	. Sampling Strategy of Splitting Modules for Supernet Training
	. Single-View SplitNets
	. Multi-View SplitNets

	. Analysis of Different Initializations
	. Empirical Comparison of Different Initializations
	. Hardware Modeling
	. Adaptability of SplitNets

