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1. Proof of Theorem 3.1
Theorem 3.1 Let ẑ1, ẑ2, ẑ3, ẑ4 ∈ Rn be vec-

tors such that ∥ẑi∥ = r for all i ∈ {1, 2, 3, 4} for
some constant r, and let ẑ2 denote the element-wise
square of a vector. For some constants α ∈ [0, 1]
and β ∈ [0, 1], the bilinear interpolation operation
zinterp = (1−α)(1−β)ẑ1+(1−α)βẑ2+α(1−β)ẑ3+αβẑ4
does not guarantee that ∥zinterp∥2 = r. However, the
L2 norm-preserving interpolation operation zinterp =√

(1− α)(1− β)ẑ21 + (1− α)βẑ22 + α(1− β)ẑ23 + αβẑ24
guarantees that ∥zinterp∥2 = r for all α ∈ [0, 1] and
β ∈ [0, 1]. (The square root is taken element-wise.)

Proof. To show that bilinear interpolation of vectors with
the same L2 norm does not in general preserve the L2 norm,
consider the following example with:
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For α = β = 1/2, using bilinear interpolation, we have:
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which means

∥zinterp∥2 =

√
1

4
r2 =

1

2
r ̸= r.

This counter-example shows that bilinear interpolation gen-
erally does not preserve the L2 norm of the interpolated vec-
tor.

Now, we show that the L2 norm
preserving interpolation operation zinterp =√

(1− α)(1− β)ẑ21 + (1− α)βẑ22 + α(1− β)ẑ23 + αβẑ24,
when applied to vectors ẑ1, ẑ2, ẑ3, ẑ4 ∈ Rn with the same
L2 norm r, yields an interpolated vector of the same L2

norm r. Let

ẑi =


ẑi,1
ẑi,2

...
ẑi,n

 for all i ∈ {1, 2, 3, 4},

where ẑi,j denotes the j-th component of the vector ẑi. The
element-wise square of the vector ẑi is given by:

ẑ2i =


ẑ2i,1
ẑ2i,2

...
ẑ2i,n

 for all i ∈ {1, 2, 3, 4}.

Using the L2 norm preserving interpolation on
ẑ1, ẑ2, ẑ3, ẑ4 ∈ Rn with ∥ẑi∥ = r for all i ∈ {1, 2, 3, 4},
for all α ∈ [0, 1] and β ∈ [0, 1], and letting α̃ = 1− α and
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β̃ = 1− β, we have:

∥zinterp∥22
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∥∥∥∥√α̃β̃ẑ21 + α̃βẑ22 + αβ̃ẑ23 + αβẑ24
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= α̃β̃ẑ21,1 + α̃βẑ22,1 + αβ̃ẑ23,1 + αβẑ24,1

+ α̃β̃ẑ21,2 + α̃βẑ22,2 + αβ̃ẑ23,2 + αβẑ24,2

...

+ α̃β̃ẑ21,n + α̃βẑ22,n + αβ̃ẑ23,n + αβẑ24,n

= α̃β̃∥ẑ1∥22 + α̃β∥ẑ2∥22 + αβ̃∥ẑ3∥22 + αβ∥ẑ4∥22
= (1− α)(1− β)r2 + (1− α)βr2 + α(1− β)r2 + αβr2

= (1− α)r2 + αr2

= r2,

which means
∥zinterp∥2 =

√
r2 = r,

thus completing the proof.

In a Deformable ProtoPNet, we apply the L2 norm pre-
serving interpolation operation to compute the interpolated
image features ẑa+m+∆1,b+n+∆2

for given values of a, b,
m, and n, as follows:

ẑa+m+∆1,b+n+∆2

=
√
(1− α)(1− β)ẑ21 + (1− α)βẑ22 + α(1− β)ẑ23 + αβẑ24

with
ẑ1 = ẑ⌊a+m+∆1⌋,⌊b+n+∆2⌋, (S1)

ẑ2 = ẑ⌊a+m+∆1⌋,⌈b+n+∆2⌉, (S2)

ẑ3 = ẑ⌈a+m+∆1⌉,⌊b+n+∆2⌋, (S3)

ẑ4 = ẑ⌈a+m+∆1⌉,⌈b+n+∆2⌉, (S4)

and

α = (a+m+∆1)− ⌊a+m+∆1⌋ = ∆1 − ⌊∆1⌋, (S5)

β = (b+ n+∆2)− ⌊b+ n+∆2⌋ = ∆2 − ⌊∆2⌋. (S6)

2. Backpropagation through a Deformable
Prototype

Recall that a deformable prototype p̂(c,l), when applied
at the spatial position (a, b) on the image-feature tensor ẑ,
computes its similarity with the interpolated image features
ẑ∆a,b according to the following equation:

g(ẑ)
(c,l)
a,b =

∑
m

∑
n

p̂(c,l)
m,n · ẑa+m+∆1,b+n+∆2

, (S7)

where we have

ẑa+m+∆1,b+n+∆2
=
√
ζ(a,b,m,n)(ẑ,∆1,∆2) (S8)

and we have defined

ζ(a,b,m,n)(ẑ,∆1,∆2)

= (1− α)(1− β)ẑ21 + (1− α)βẑ22 + α(1− β)ẑ23 + αβẑ24,

where ẑ1, ẑ2, ẑ3, ẑ4, α, and β are given by equations (S1),
(S2), (S3), (S4), (S5), and (S6), respectively. Note that
ζ(a,b,m,n)(ẑ,∆1,∆2) can be rewritten as:

ζ(a,b,m,n)(ẑ,∆1,∆2)

=
∑
i

∑
j

ẑ2i,j max(0, 1− |(a+m+∆1)− i|)

·max(0, 1− |(b+ n+∆2)− j|).

(S9)

To show that we can back-propagate gradients through
a deformable prototype, it is sufficient to show that we
can compute the gradients of the prototype similarity score
g(ẑ)

(c,l)
a,b (when a deformable prototype p̂(c,l) is applied at

the spatial position (a, b) on the image-feature tensor ẑ),
with respect to every (m,n)-th prototypical part p̂(c,l)

m,n of
the deformable prototype p̂(c,l) and with respect to every
(discrete) spatial position ẑi,j of the image-feature tensor ẑ.

From equation (S7), it is easy to see that the gradient of
the prototype similarity score g(ẑ)

(c,l)
a,b with respect to the

(m,n)-th prototypical part p̂(c,l)
m,n is given by:

∂g(ẑ)
(c,l)
a,b

∂p̂
(c,l)
m,n

= ẑ⊤a+m+∆1,b+n+∆2
.

Before we derive the gradient of the prototype simi-
larity score g(ẑ)

(c,l)
a,b with respect to a (discrete) spatial

position ẑi,j of the image-feature tensor ẑ, note that the
prototype similarity score g(ẑ)

(c,l)
a,b is computed by first

computing ζ(a,b,m,n)(ẑ,∆1,∆2) using equation (S9), fol-
lowed by computing ẑa+m+∆1,b+n+∆2

by taking the square
root of ζ(a,b,m,n)(ẑ,∆1,∆2) element-wise (equation (S8),
and finally computing the similarity score using equa-
tion S7. In particular, in the first step when we com-
pute ζ(a,b,m,n)(ẑ,∆1,∆2) using equation (S9), note that
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∆1 = ∆1(ẑ, a, b,m, n) and ∆2 = ∆2(ẑ, a, b,m, n) are
functions depending on ẑ, a, b, m, and n – in particu-
lar, for all (discrete) spatial positions (a, b) on the image-
feature tensor ẑ and for all (m,n)-th prototypical parts, ∆1

and ∆2 are produced by applying convolutional layers to
ẑ. Hence, there are three ways in which ẑ can influence
ζ(a,b,m,n)(ẑ,∆1,∆2): (1) directly through the ẑ2i,j term in
equation (S9), (2) through ∆1, and (3) through ∆2. We
have to take into account all three ways in which ẑ influ-
ences ζ(a,b,m,n)(ẑ,∆1,∆2), when applying the chain rule
to compute the gradient of the prototype similarity score
g(ẑ)

(c,l)
a,b with respect to a (discrete) spatial position ẑi,j of

the image-feature tensor ẑ. In particular, we have:

∂g(ẑ)
(c,l)
a,b

∂ẑi,j

=
∑
m

∑
n

∂g(ẑ)
(c,l)
a,b

∂ẑa+m+∆1,b+n+∆2

∂ẑa+m+∆1,b+n+∆2

∂ζ(a,b,m,n)(ẑ,∆1,∆2)(
∂ζ(a,b,m,n)(ẑ,∆1,∆2)

∂ẑi,j

+
∂ζ(a,b,m,n)(ẑ,∆1,∆2)

∂∆1

∂∆1

∂ẑi,j

+
∂ζ(a,b,m,n)(ẑ,∆1,∆2)

∂∆2

∂∆2

∂ẑi,j

)
.

(S10)

From equation (S7), for given values of a, b, m, and n,
we have:

∂g(ẑ)
(c,l)
a,b

∂ẑa+m+∆1,b+n+∆2

= (p̂(c,l)
m,n)

⊤. (S11)

From equation (S8), for given values of a, b, m, n, we
have:

∂ẑa+m+∆1,b+n+∆2

∂ζ(a,b,m,n)(ẑ,∆1,∆2)
= diag

(
1

2
√
ζ(a,b,m,n)(ẑ,∆1,∆2)

)
,

(S12)
where diag is a function that converts a d-dimensional vec-
tor into a d×d diagonal matrix, and the square root is taken
element-wise.

From equation (S9), for given values of a, b, m, n, we
have:

∂ζ(a,b,m,n)(ẑ,∆1,∆2)

∂ẑi,j

= diag
(
2ẑi,j max(0, 1− |(a+m+∆1)− i|)

·max(0, 1− |(b+ n+∆2)− j|)
)
,

(S13)

∂ζ(a,b,m,n)(ẑ,∆1,∆2)

∂∆1

=
∑
i

∑
j

ẑ2i,j max(0, 1− |(b+ n+∆2)− j|)

·


0 if |(a+m+∆1)− i| ≥ 1

1 if − 1 < (a+m+∆1)− i < 0

−1 if 0 ≤ (a+m+∆1)− i < 1,

(S14)

and

∂ζ(a,b,m,n)(ẑ,∆1,∆2)

∂∆2

=
∑
i

∑
j

ẑ2i,j max(0, 1− |(a+m+∆1)− i|)

·


0 if |(b+ n+∆2)− j| ≥ 1

1 if − 1 < (b+ n+∆2)− j < 0

−1 if 0 ≤ (b+ n+∆2)− j < 1.

(S15)

With equations (S11) – (S15), and noting that the gradi-
ents ∂∆1

∂ẑi,j
and ∂∆2

∂ẑi,j
are well-defined (because ∆1 and ∆2

are produced by applying convolutional layers to ẑ, and
convolutional layers are differentiable), we have shown that
the gradient of the prototype similarity score g(ẑ)

(c,l)
a,b with

respect to a (discrete) spatial position ẑi,j of the image-
feature tensor ẑ, given in equation (S10), is well-defined.
Hence, we can back-propagate through a deformable proto-
type.

3. More Examples of Reasoning Processes
We present more examples of reasoning processes pro-

duced by the top performing models on each dataset (for
CUB-200-2011 [10], we show ResNet50-based Deformable
ProtoPNet [4] with 3 × 3 prototypes and with 2 × 2 pro-
totypes; for Stanford Dogs [6], we show Resnet152-based
Deformable ProtoPNet with 3 × 3 prototypes) in Figure 1,
Figure 2 and Figure 3. In each case, we show the two de-
formable prototypes of the predicted class that produced the
highest similarity scores. The similarity with these proto-
types provide evidence for the test image belonging to the
predicted class. For simplicity, we show only the evidence
contributing to the predicted class for each test image.

Figure 1 shows the reasoning process of the best per-
forming Deformable ProtoPNet on CUB-200-2011 [10] for
a test image of an eastern towhee (top), a test image of
an Acadian flycatcher (middle), and a test image of a pied
billed grebe (bottom). To find evidence for the bird in Fig-
ure 1 (top) being an eastern towhee, our Deformable Pro-
toPNet compares each deformable prototype of the eastern
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towhee class to the test image by scanning the prototype
across the test image (in the latent space of image features)
– in particular, the prototypical parts within a deformable
prototype can adaptively change their relative spatial po-
sitions, as the deformable prototype moves across the test
image (in the latent space), looking for image parts that are
semantically similar to its prototypical parts. In the end,
the Deformable ProtoPNet will take the highest similarity
across the image for each deformable prototype as the sim-
ilarity score between that prototype and the image – for the
test image of an eastern towhee in Figure 1 (top), the simi-
larity score between the top prototype of the eastern towhee
class and the test image is 0.960. Since cosine similarity is
used by a Deformable ProtoPNet, all similarity scores fall
between −1 and 1, so a similarity score of 0.960 is very
high. For each comparison with a deformable prototype,
colored boxes on the test image in the figure show the spa-
tial arrangement of the prototypical parts that is used to pro-
duce the similarity score. The similarity score produced by
each deformable prototype is then multiplied by a class con-
nection value to produce the points contributed by that pro-
totype, and the points contributed by all prototypes within a
class are added to produce a class score. The class with the
highest class score is the predicted class. For the test image
of an eastern towhee in Figure 1 (top), the class score of the
eastern towhee class is 6.945, which is the highest among
all classes, making eastern towhee the predicted class.

Similarly, Figure 1 (middle) shows the reasoning process
of the best performing Deformable ProtoPNet with 3 × 3
prototypes on CUB-200-2011 [10] for a test image of an
Acadian flycatcher, and Figure 1 (bottom) shows the rea-
soning process for a test image of a pied billed grebe.

Figure 2 shows the reasoning process of the best per-
forming Deformable ProtoPNet with 2 × 2 prototypes on
CUB-200-2011 [10] for a test image of a black-footed al-
batross (top), a test image of a rusty blackbird (middle) and
for a test image of a bronzed cowbird (bottom).

Figure 3 shows the reasoning process of the best per-
forming Deformable ProtoPNet on Stanford Dogs [6] for a
test image of a Norfolk terrier (top), a test image of a toy
terrier (middle) and for a test image of a bull mastiff (bot-
tom).

4. Local Analysis: Visualizations of Most Sim-
ilar Prototypes to Given Images

In this section, we visualize the most similar prototypes
to a given test image (we call this a local analysis of the
test image), for a number of test images. Figure 4 shows the
two most similar deformable prototypes (learned by the best
performing Deformable ProtoPNet using 3× 3 prototypes)
for each of three test images from CUB-200-2011 [10]. Fig-
ure 5 shows the two most similar deformable prototypes
(learned by the best performing Deformable ProtoPNet us-

ing 2 × 2 prototypes) for each of three test images from
CUB-200-2011 [10]. Figure 6 shows the two most simi-
lar deformable prototypes (learned by the best performing
Deformable ProtoPNet) for each of three test images from
Stanford Dogs [6]. For each test image on the left, the top
row shows the two most similar deformable prototypes, and
the bottom row shows the spatial arrangement of the proto-
typical parts on the test image that produced the similarity
score for the corresponding prototype. In general, the most
similar prototypes for a given image come from the same
class as that of the image, and there is some semantic corre-
spondence between a prototypical part and the image patch
it is compared to under the spatial arrangement of the pro-
totypical parts where the deformable prototype achieves the
highest similarity across the image.

5. Global Analysis: Visualizations of Most
Similar Images to Given Prototypes

In this section, we visualize the most similar training
and test images to a given deformable prototype (we call
this a global analysis of the prototype), for a number of
deformable prototypes. Figure 7 shows the two most sim-
ilar training images and the two most similar test images
for each of three deformable prototypes learned by the best
performing Deformable ProtoPNet with 3 × 3 prototypes
on CUB-200-2011 [10]. Figure 8 shows the two most sim-
ilar training images and the two most similar test images
for each of three deformable prototypes learned by the best
performing Deformable ProtoPNet with 3 × 3 prototypes
on CUB-200-2011 [10]. Figure 9 shows the two most simi-
lar training images and the two most similar test images for
each of three deformable prototypes learned by the best per-
forming Deformable ProtoPNet on Stanford Dogs [6]. For
each deformable prototype on the left, we show two most
similar images from the training set (middle) and two most
similar images from the test set (right). In general, the most
similar training and test images for a given deformable pro-
totype come from the same class as that of the prototype,
and for each of the most similar images, there is some se-
mantic correspondence between most prototypical parts and
the image patches they are compared to under the spatial ar-
rangement of the prototypical parts where the deformable
prototype achieves the highest similarity across the image.

6. Numerical Results on Stanford Dogs
We conducted another case study of our Deformable Pro-

toPNet on Stanford Dogs [6]. We trained each Deformable
ProtoPNet with 10 3 × 3 deformable prototypes per class,
where each prototype was composed of 9 prototypical parts.
We ran experiments using VGG-19 [8], ResNet-152 [4], and
DenseNet-161 [5] as CNN backbones. All backbones were
pretrained using ImageNet [2].
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Method VGG-19 ResNet-152 Densenet161
Baseline 77.3 85.2 84.1
ProtoPNet [1] 73.6 76.2 77.3
Def. ProtoPNet (nd) 74.8 86.5 83.7
Def. ProtoPNet 77.9 86.5 83.7

Table 1. Accuracy of Deformable ProtoPNet compared to the baseline model, ProtoPNet [1], and Deformable ProtoPNet without deforma-
tions (denoted (nd)) across different base architectures on the Stanford Dogs dataset [6].

Interpretability Model: accuracy
Part-level
attention

FCAN [7]: 84.2
RA-CNN [3]: 87.3

Part-level attn. +
learned prototypes

ProtoPNet [1]: 77.3
Def. ProtoPNet(nd): 86.5

Part-level attn. +
learned prototypes +
deformations

Def. ProtoPNet: 86.5

Table 2. Accuracy and interpretability of Deformable ProtoPNet
compared to other interpretable models on Stanford Dogs [6]. We
use (nd) to indicate a Deformable ProtoPNet without using defor-
mations.

We find that Deformable ProtoPNet can achieve com-
petitive accuracy across multiple backbone architec-
tures. As shown in Table 1, our Deformable ProtoPNet
achieves higher accuracy than the baseline uninterpretable
architecture in two out of three cases, including the highest
performing model based on ResNet-152 [4]. In all cases, we
achieve substantially higher accuracy than ProtoPNet [1].

We find that using deformations improves or main-
tains accuracy. As shown in Table 1, a Deformable ProtoP-
Net with deformations achieves a level of accuracy higher
than or equal to the corresponding model without deforma-
tions across all three CNN backbones – in particular, a De-
formable ProtoPNet with deformations achieves a test ac-
curacy more than 3% higher than the one without deforma-
tions when VGG-19 is used as a backbone.

We find that a single Deformable ProtoPNet achieves
accuracy on par with the state-of-the-art. As Table
2 shows, a Deformable ProtoPNet can achieve accuracy
(86.5%) competitive with the state-of-the-art.

7. Experimental Setup

7.1. Hyperparameters

We ran experiments using VGG [8], ResNet [4], and
DenseNet [5] as CNN backbones f . The ResNet-50 back-
bone was pretrained on iNaturalist [9], and all other back-
bones were pretrained using ImageNet [2]. We used 14×14
as the spatial dimension (height and width) of the latent
image-feature tensor. In particular, since the CNN back-

bones produce feature maps of spatial dimension 7× 7, we
obtain 14×14 feature maps by removing the final max pool-
ing from the backbone architecture, or by upsampling from
7× 7 feature maps via bilinear interpolation. The convolu-
tional feature maps are augmented with a uniform channel
of value ϵ = 10−5, and then normalized and rescaled at
each spatial position as described in the main paper.

When prototypes were allowed to deform, we used two
convolutional layers to predict offsets for prototype defor-
mations – the first convolutional layer has 128 output chan-
nels, and the second convolutional layer has either 18 output
channels for 3× 3 prototypes (to produce 2 offsets for each
of the 9 prototypical parts at each spatial position) or 8 out-
put channels for 2 × 2 prototypes (to produce 2 offsets for
each of the 4 prototypical parts at each spatial position).

For our experiments on CUB-200-2011 [10], we trained
each Deformable ProtoPNet with 6 deformable prototypes
per class when each prototype was composed of 9 proto-
typical parts, and 10 deformable prototypes per class when
each prototype was composed of 4 prototypical parts (ex-
cept where otherwise specified). For our experiments on
Stanford Dogs [6], we trained each Deformable ProtoPNet
with 10 deformable prototypes per class where each proto-
type was composed of 9 prototypical parts.

We trained each Deformable ProtoPNet for 30 epochs.
In particular, we started our training with a “warm-up”
stage, in which we loaded and froze the pre-trained weights
and biases and we froze the offset prediction branch, and
focused on training the deformable prototype layer for
5 epochs (7 epochs for VGG- and DenseNet-based De-
formable ProtoPNets on CUB-200-2011 [10]), at a learning
rate of 3 × 10−3. We then performed a second “warm-up”
stage, in which we froze the offset prediction branch and
focused on training the deformable prototype layer as well
as the weights and biases of the CNN backbone for 5 more
epochs, at a learning rate of 1 × 10−4 for the CNN back-
bone parameters and 3 × 10−3 for the deformable proto-
types. Finally, we jointly trained all model parameters for
the remaining training epochs, at a starting learning rate of
1 × 10−4 for the CNN backbone parameters, 3 × 10−3 for
the deformable prototypes, and 5× 10−4 for the offset pre-
diction branch. We reduced the learning rate by a factor of
0.1 every 5 epochs. We performed prototype projection and
last layer optimization at epoch 20 and epoch 30.
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7.2. Hardware and Software

Experiments were conducted on two types of servers.
The first type of servers comes with Intel Xeon E5-2620
v3 (2.4GHz) CPUs and two to four NVIDIA A100 SXM4
40GB GPUs, and the experiments were run on the first
type of servers with PyTorch version 1.8.1 and CUDA ver-
sion 11.1. The second type of servers comes with Ten-
sorEX TS2-673917-DPN Intel Xeon Gold 6226 Proces-
sor (2.7Ghz) CPUs with two NVIDIA Tesla 2080 RTX Ti
GPUs, and the experiments were run on the second type
of servers with PyTorch version 1.10.0 and CUDA version
10.2.

The deformable prototypes were implemented in CUDA
C++, while other components of Deformable ProtoPNet
were implemented in Python 3 using PyTorch. Code
is available at https://github.com/jdonnelly36/Deformable-
ProtoPNet.
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Figure 1. Example reasoning processes of a Deformable ProtoP-
Net with 3 × 3 prototypes when classifying a test image of an
Eastern towhee (top), an Acadian flycatcher (middle), and a pied
billed grebe (bottom). In each case, we show the two deformable
prototypes of the predicted class that produced the highest similar-
ity scores.
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Figure 2. Example reasoning processes of a Deformable ProtoP-
Net with 2×2 prototypes when classifying a test image of a black-
footed albatross (top), a rusty blackbird (middle), and a bronzed
cowbird (bottom). In each case, we show the two deformable pro-
totypes of the predicted class that produced the highest similarity
scores.
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Figure 3. Example reasoning process of a Deformable ProtoPNet
with 3 × 3 prototypes on a test image of a Norfolk terrier (top),
a toy terrier (middle), and a bull mastiff (bottom). In each case,
we show the two deformable prototypes of the predicted class that
produced the highest similarity scores.

Bay Breasted Warbler

Sage Thrasher

Cardinal

Figure 4. Local analyses of three test images from CUB-200-
2011 [10] for a Deformable ProtoPNet with 3× 3 prototypes. For
each test image on the left, the top row shows the two most sim-
ilar deformable prototypes, and the bottom row shows the spatial
arrangement of the prototypical parts on the test image that pro-
duced the similarity score for the corresponding prototype.
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Gray Crowned Rosy Finch

Olive Sided Flycatcher

Yellow-Bellied Flycatcher

Figure 5. Local analyses of three test images from CUB-200-
2011 [10] for a Deformable ProtoPNet with 2× 2 prototypes. For
each test image on the left, the top row shows the two most sim-
ilar deformable prototypes, and the bottom row shows the spatial
arrangement of the prototypical parts on the test image that pro-
duced the similarity score for the corresponding prototype.

Toy Terrier

Rhodesean Ridgeback

Saluki

Figure 6. Local analyses of three test images from Stanford Dogs
[6] for a Deformable ProtoPNet with 3 × 3 prototypes. For each
test image on the left, the top row shows the two most similar
deformable prototypes, and the bottom row shows the spatial ar-
rangement of the prototypical parts on the test image that produced
the similarity score for the corresponding prototype.
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Deformable Prototype Nearest two training images Nearest two test images

Deformable Prototype Nearest two training images Nearest two test images

Deformable Prototype Nearest two training images Nearest two test images

Figure 7. Global analyses of three deformable prototypes from CUB-200-2011 [10] for a Deformable ProtoPNet with 3 × 3 prototypes.
For each deformable prototype on the left, we show two most similar images from the training set (middle) and two most similar images
from the test set (right).

Deformable Prototype Nearest two training images Nearest two test images

Deformable Prototype Nearest two training images Nearest two test images

Deformable Prototype Nearest two training images Nearest two test images

Figure 8. Global analyses of three deformable prototypes from CUB-200-2011 [10] for a Deformable ProtoPNet with 2 × 2 prototypes.
For each deformable prototype on the left, we show two most similar images from the training set (middle) and two most similar images
from the test set (right).
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Deformable Prototype Nearest two training images Nearest two test images

Deformable Prototype Nearest two training images Nearest two test images

Figure 9. Global analysis for three deformable prototypes from Stanford Dogs [6] for a Deformable ProtoPNet with 3× 3 prototypes. For
each deformable prototype on the left, we show two most similar images from the training set (middle) and two most similar images from
the test set (right).
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