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| COCO VG CC SBU
#lmages | 113K 108K 3.IM 875K
#Captions | 567K 54M 3.1M 875K

Table 1. Statistics of the pre-training datasets.

A. Implementation Details

Datasets. The statistics of our pre-training datasets is
shown in Table 1. Following many previous work [3, 8,

], we pre-train the models with four datasets, includ-
ing COCO, Visual Genome, Conceptual Captions and SBU
Captions, consisting of about 4M images and 9M image-
caption pairs in total.

For the downstream tasks, we test the models on
VQAWV?2 [1] for visual question answering, NLVR? [15] for
visual reasoning, COCO [ 1] and Flickr30k [13] for image-
text retrieval, and SNLI-VE [16] for visual entailment. We
use the standard splits for all the datasets except for VQAV2,
where we follow standard practice [3,8, 10] to train the mod-
els with both its training and development data, and treat its
test-dev set as the development set. Note that we do not use
the Visual Genome VQA data for data augmentation in our
VQA settings.

Pre-training Settings. We pre-train our best models using
the AdamW optimizer [|2] with the learning rates set to le-
5 for the bottom image and text encoders and 5e-5 for the
cross-modal module. The warm-up ratio is set to 10%, and
the learning rate is linearly decayed to O after 10% of the
total training steps. The batch size, hidden size, and number
of heads are set to 4096, 768, 12, respectively. We pre-train
the models for 100k steps on 8 NVIDIA A100 GPUs, which
takes around 3 days for METER-CLIP-ViTgasg—32 and 8
days for METER-Swingasg and METER-CLIP-ViTgasg—16-

Fine-tuning Settings. For the downstream tasks, we per-
form grid searches over the learning rates and image res-
olutions. The learning rates and image resolutions are se-
lected from {le-6, 2e-6, Se-6, le-5} and {288, 384, 576},

* Work was done when the author interned at Microsoft.

Model Time ([8]) Time (ours) | VQAv2
ViLBERT 920 - 70.55
VisualBERT 925 - 70.80
LXMERT 900 - 72.42
UNITER-Base 900 - 72.70
OSCAR-Base 900 - 73.16
VinVL-Base 650 - 75.95
PixelBERT-X152 160 - 74.45
CLIP-ViL (ResNet50x4) - 57 76.70
ViLT 15 26 71.26
ALBEF (14M) - 52 76.04
" METER-Swingasg | - 59 | 7642
METER-CLIP-ViTgasg - 53 77.64

Table 2. Inference time (ms) of different models. We report the
inference time measured by [8] and in our setting. We also list the
model performance on the VQAV2 test-std set.

respectively. We apply RandAugment [4] during finetuning
following previous work [8, 10].

B. Inference Time

We measure the inference time of different models as in
Table 2. First, as shown in [8], their ViT-based model is
much faster than previous region-feature-based VLP mod-
els. In our setting, we measure the average inference time
of processing 1 VQA instance on 1 NVIDIA V100 GPU.
We find that while our model can be slower than the ViLT
model, it is still significantly faster than region-feature-
based models and comparable to other ViT-based ones. In
addition, we can achieve much stronger performance on
downstream tasks than other models.

C. Image Captioning

While in this paper we mainly focus on finetuning our
models for discriminative downstream tasks such as visual
question answering, here we investigate if our models can
also be applied to generative tasks. Specifically, we finetune
our models on the COCO image captioning task.

We finetune our METER-CLIP-ViTgasg model for 5
epochs using the standard maximum likelihood estimation



Model (#Pre-training Images) ‘ BLEU METEOR Cider SPICE
OSCARpasg (4M) 36.5 30.3 123.7 23.1
VinVLgasg (5.6M) 38.2 30.3 129.3 23.6
SimVLMgask (1.8B) 39.0 329 134.8 24.0

" METER-CLIP-ViTgasg 4M) | 388 ~ 300 = 1282 230 ~

Table 3. Image captioning results of different models trained with
maximum likelihood estimation on COCO.

objective. At each decoding step, instead of using the causal
attention mechanism, the input image and all the text tokens
can attend to all the generated text tokens so as to minimize
the discrepancy between pre-training and finetuning. We
use beam search with the beam size set to 5.

As shown in Table 3, we can achieve reasonable perfor-
mance on image captioning even though our model employs
an encoder-only architecture. We expect that an encoder-
decoder model would be more suitable for generative tasks,
which we leave as future work.

D. Multi-scale Feature Fusion

For the pre-trained text and visual encoders, different
layers can contain different types of information. For ex-
ample, [7] finds that the intermediate layers of BERT en-
code a rich hierarchy of linguistic information, with surface
features at the bottom, syntactic features in the middle and
semantic features at the top. Aggregating the features at
different layers has demonstrated to be helpful in both vi-
sion [6, 1 7] and language [2, 5]. Therefore, in this part, we
investigate if we can use feature fusion techniques to better
utilize the information embedded at different layers of the
pre-trained encoders.

Method. Based on some preliminary explorations, here we
adopt a simple fusion strategy and only fuse the representa-
tions of the text and image encoders but not the cross-modal
layers on the top. Specifically, given a text token or image
patch x;, we first feed it into a text or image encoder on
the bottom of our model (e.g., BERT), and get its repre-
sentations {h(z]) ;V:O at different layers, where N is the
number of layers of the encoder. Then, we compute a gate
value for each layer and perform a weighted sum to get the
final representation of x;:

ofe) = M) + 3 gl Dh(d), ()

j=

i

where ¢ is a linear transformation function. We then feed
o(z;) to the top cross-modal layers. Note that the fusion
can be done in both the text and visual encoders.

Results. We pre-train the models using the co-attention
model with RoBERTa as the text encoder and Swin Trans-
former as the visual encoder. We evaluate the models both

VQAv2 Flickr-ZS

Model test-dev IR TR

w/o pre-training
METER-Swingasg w/o fusion 72.38 - -
METER-Swingasg W/ fusion 72.91 - -

METER-CLIP-ViTgasg w/o fusion 71.75 - -

METER-CLIP-ViTgasg W/ fusion 72.92 - -
with pre-training

METER-Swingasg W/o fusion 76.43 71.68 85.30
METER-Swingasg W/ fusion 76.31 70.58 83.70

METER-CLIP-ViTgasg w/o fusion 77.19 76.64  89.60
METER-CLIP-ViTgasg W/ fusion 77.06  76.26  88.00

Table 4. The fusion strategy improves the model performance
without vision-and-language pre-training but can degrade the
model performance after pre-training.
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Figure 1. Correlation between model performance on vision-and-
language tasks and pure vision or language tasks.

with and without VLP following the default settings. Be-
cause Swin Transformers have different numbers of image
representations at different layers, we perform an average
pooling so that each layer has 12x 12 patch representations.
As shown in Tab. 4, while the fusion strategy can improve
the model performance by a small margin without VLP, it
can degrade the model performance after pre-training. We
hypothesize that this is because after the pre-training, the
VLP model can learn how to well utilize the representations
in the pre-trained encoders and layer fusion is not necessary.

E. Correlation between Vision-and-Language
Tasks and Vision or Language Tasks

In this section, we perform a quantitative analysis of
the correlation between model performance on vision-and-
language tasks and pure vision or language tasks. We vary
different text and vision encoders, and plot the model per-
formance on the VQAvV2 test-dev set and SQuAD or Ima-
geNet datasets as in Figure 1. We also compute the Pearson
correlations in both cases. We find that the Pearson correla-
tion coefficients and p-values are -0.09 and 0.88 in the VL
vs. L setting, and 0.41 and 0.36 in the VL vs. V setting, in-
dicating that there exists little to none correlations between
the model performance on VL tasks and V or L tasks.



Text Encoder \ QQpP MNLI QNLI

SST2 CoLA

MRPC STSB RTE

After VLP

91.3440.08 87.38+0.18 92.671+0.06 93.92+0.50 57.88+0.79 90.57+0.78 89.93+0.46 70.28+2.00

Before VLP ‘91.31:&0.15 87.53+0.24 92.61+0.34 94.38+0.20 58.72+0.73 91.03£0.59 90.15£0.18 71.24+3.07

Table 5. Performance of text encoders (RoBERTa-base) on GLUE dev sets before and after VLP. The image encoder during VLP is CLIP-
ViT-224/16. We report average scores and standard deviations over three runs of different random seeds.

Before VLP After VLP
CF10 CF100 CF10 CF100
Swin-Base-384/32 | 97.00 89.15 97.99  90.26
CLIP-ViT-224/16 ‘ 95.85 82.60 9492 81.90

Image Encoder ‘

Table 6. Linear probe performance on CIFAR-10 and CIFAR-100.
The text encoder during VLP is RoBERTa-base.

- Flickr-ZS
Pre-training Datasets | VQAv2 IR TR
COCO 7295 4638 60.20
CcC 73.05 39.84 5550
SBU 70.14  21.52  35.90
VG 73.54  39.24 4930
COCO+CC+SBU+VG | 7498  66.08 78.10

Table 7. Results of models pre-trained with different datasets.

F. Unimodal Tasks

We also investigate the model performance on unimodal
tasks after VLP. For text-only tasks, we finetune the bottom
text encoders on GLUE tasks; for image-only tasks, we fit
a linear classifier on the learned representations of image
encoders on CIFAR-10 and CIFAR-100 [9].

We report results in Table 5 and 6. As shown in the ta-
bles, our text encoder gets slightly worse performance on
the GLUE tasks on average; for image-only tasks, VLP
seems to improve the model performance for Swin Trans-
former but not for CLIP-ViT, possibly because of domain
issues. Note that in both sets of the experiments, we only
use our text or image encoder and discard the rest of the net-
works, and how to utilize multi-modal encoder to improve
uni-modal performance is an open problem and we leave it
as a future direction.

G. Analysis on Pre-training Datasets

We also perform analysis on our pre-training datasets.
We pre-train our model on each of the pre-training datasets.
We choose CLIP-ViT-224/32 as the image encoder and
BERT-base-uncased as the text encoder, and employ the co-
attention fusion module. We pre-train the model for 50k
steps on each dataset and report the evaluation results on
VQAV2 and Flickr30k zero-shot retrieval tasks.

As we can see from Table 7, both data size and do-
main similarity contribute to the downstream task perfor-
mance. CC and VG are the largest datasets and COCO
most matches the downstream task domains, thus models

pre-trained on the three datasets obtain the highest scores.

H. Visualization

In this section, we use Grad-CAM [14] to visualize our
models. Specifically, we visualize the cross-attention maps
of the pre-trained models corresponding to individual words
when performing masked language modeling. As shown in
Figure 2 and 3, both our Swin Transformer-based and CLIP-
ViT-based models can correctly attend to the corresponding
regions given different words, suggesting that our models
can learn visual grounding implicitly during pre-training.

I. Limitations

While we have demonstrated the effectiveness of our
models across different tasks, our models still have several
limitations:

Generative Tasks. We mainly focus on discriminative
tasks such as visual question answering and visual reason-
ing in this paper, while generative tasks such as image cap-
tioning are under-investigated. We perform experiments on
the COCO image captioning data in Appendix, and will in-
vestigate more on this in the future.

Scalability. In our current settings, we pre-train the models
with 4M or 14M images, thus it is unclear how the model
performance would be if we pre-train the models with larger
datasets and we are actively experimenting in this direction.

English Data. So far, we only experiment on the English
data, and it is worth investigating if our models can gener-
alize to other languages as well, which we leave as a future
direction.
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