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Symbol Meaning

(xti, y
t
i) Input sample & its label from the tth task

Ct Label set of the tth task
C1:t All labels from all seen tasks
θt Task token of the tth task
Clft Independent classifier of the tth task
SABl lth Self-Attention Block
TAB Task-Attention Block

Table 1: Notations used in the paper.

A. Appendix
Table 1 summarizes the notations used along this paper.

A.1. Experimental details

Datasets We use three datasets: CIFAR100 [15], Ima-
geNet100, and ImageNet1000 [4]. CIFAR100 is made of
50,000 train RGB images and 10,000 test RGB images of
size 32 × 32 for 100 classes. ImageNet1000 contains 1.2
million RGB train images and 50,000 validation RGB im-
ages of size 224 × 224 for 1000 classes. ImageNet100 is a
subset of 100 classes from ImageNet1000. We follow POD-
Net [6] and DER [28] and use the same 100 classes they’ve
used. Fine details about the datasets, like the class orders,
can be found in the provided code in the options files (see
readme).

Implementation For all datasets, we train the model for
500 epochs per task with Adam [13] with a learning rate
of 5e−4, including 5 epochs of warmup. Following UCIR
[11], PODNet [6], and DER [28], at the end of each task
(except the first) we finetuned our model for 20 epochs with
a learning rate of 5e−5 on a balanced dataset. In DyTox,
we applied the standard data augmentation of DeiT [25] but
we removed the pixel erasing [32], MixUp [30], and Cut-
Mix [29] augmentations for fair comparison. In contrast,
in DyTox+ we used a MixUp [30] with beta distribution

Hyperparameter Range Chosen value

Learning rate 1e−3, 5e−4, 1e−4 5e−4

Epochs 300, 500, 700 500
λ 0.05, 0.1, 0.5 0.1
CIFAR’s patch size 4, 8, 16 4
ImageNet’s patch size 14, 16 16

Table 2: Hyperparameters that were tuned from the code-
base of [25]. We ran a gridsearch on CIFAR100 10 steps on
a validation set made of 10% of the training set, and kept
fixed the chosen hyperparameters for all experiments (any
number of steps and any datasets).

β(0.8, 0.8). During all incremental tasks (t > 1), the old
classifiers Clfi, i < t and the old task tokens θi, i < t
parameters are frozen. During the finetuning phase where
classes are rebalanced [2, 11, 6, 28], these parameters are
optimized, but the SABs are frozen.

Hyperparameter tuning In contrast with previous works
[6, 28], we wanted stable hyperparameters, tuned for a sin-
gle setting and then applied on all experiments. This avoids
optimizing for the number of tasks, which defeats the pur-
pose of continual learning [7]. We tuned hyperparameters
for DyTox using a validation subset made of 10% of the
training dataset, and this only on the CIFAR100 experiment
with 10 steps. We provide in Table 2 the chosen hyperpa-
rameters. Results in the main paper shows that those hyper-
parameters reach state-of-the-art on all other settings and
notably on ImageNet.

Baselines E2E [2] and Simple-DER [18] results come
from their respective papers. All other baseline results are
taken from the DER paper [28]. We now further describe
their contributions. iCaRL [23] uses a knowledge distilla-
tion loss [10] and at test-time predicts using a k-NN from its
features space. E2E [2] learns a model with knowledge dis-
tillation and applies a finetuning after each step. UCIR [11]
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TAB parameter sharing? #P Avg Last
7 97.59 72.20 56.00
3 10.77 70.20 52.34

Table 3: Investigation of the parameter sharing of TAB.
We report the “Avg” accuracy and the “Last” accuracy for
the 50 steps setting on CIFAR100. The second row corre-
sponds to DyTox.

uses cosine classifier and euclidean distance between the fi-
nal flattened features as a distillation loss. BiC [27] uses
a knowledge distillation loss and also re-calibrates [9] the
logits of the new classes using a simple linear model trained
on validation data. WA [31] uses a knowledge distillation
loss and re-weights at each epoch the classifier weights as-
sociated to new classes so that they have the same average
norm as the classifier weights of the old classes. POD-
Net [6] uses a cosine classifier and a specific distillation
loss (POD) applied at multiple intermediary features of the
ResNet backbone. RPSNet [21] uses knowledge distilla-
tion and manipulates subnetworks in its architecture, fol-
lowing the lottery ticket hypothesis [8]. DER [28] creates
a new ResNet per task. All ResNets’ embeddings are con-
catenated and fed to a unique classifier. ResNets are pruned
using HAT [24] masking procedure. Note that DER pruning
has multiple hyperparameters that are set differently accord-
ing to the settings. Furthermore, the reported parameters
count, after pruning, in [28] is an average of the count over
all steps: the final parameters count (necessarily higher)
wasn’t available. Finally, Simple-DER [18] is similar to
DER, with a simpler pruning method which doesn’t require
any hyperparameter tuning.

A.2. Parameter sharing of the TAB

Previous dynamic methods as DER [28] and Simple-
DER [18] shared no parameters between tasks until the fi-
nal classifier. We proposed instead with DyTox to share the
encoder (SABs) and the decoder (TAB) parameters across
tasks, leading to a minimal memory overhead while also
sharing common information between tasks. In Table 3, we
compare the impact of sharing the TAB per task — and only
maintain different tokens per task. In the first row, a differ-
ent TAB is created per task, while in the second row the
same TAB is used — which is the DyTox strategy. A dif-
ferent TAB per task leads to better results (56% v.s. 52%
in “Last” accuracy) because the network can be more di-
verse with each TAB specialized to its associated task. This
increased diversity has a drawback: the memory overhead
is too important (97M v.s. 10M parameters). We find in
practice that DyTox strikes a good balance between mem-
ory overhead and continual performance.

A.3. Novel continual training procedure

DyTox++ We nicknamed DyTox+ our model when com-
bined with a novel continual procedure based on MixUp
[30]. We now refine DyTox+ into DyTox++ by adding a
new component during the training: the Sharpness-Aware
Minimizer (SAM) [16]. Indeed, aiming for wider min-
ima is particularly important in continual learning [14, 26].
This is because sharp task-specific minima lead to over-
specialization to a particular task and consequently to a for-
getting of all other tasks. Weights constraints as EWC [14]
or second-order optimization [17] have similar motivations.
SAM estimates the worst closest parameters during a first
forward/backward pass, and then optimizes the loss w.r.t. to
them during a second forward/pass. In consequence, Dy-
Tox++ optimizes the loss not w.r.t. the current parameters
but w.r.t. a region of possible parameters leading to wide
local minima that span across multiple tasks. In practice,
we used the Adaptive SAM (ASAM) [16], an extension of
SAM that is more robust to hyperparameters.

DyTox+ and DyTox++ experiments The computational
overhead of ASAM is lower than more complex second-
order methods, but it still doubles the number of forward
and backward passes. For this reason, we didn’t include it
in our main experiment but propose in Table 4 and Table 5
experiments on CIFAR100 and ImageNet100. The gain
provided by MixUp then ASAM on our model (DyTox++)
leads to a consistent improvement of +4.7% in “Avg“ com-
pared to the previous State-of-the-Art DER [28] on CI-
FAR100 50 steps (Table 4 and +4.6% on ImageNet100 10
steps (Table 5). Future works could consider the promising
Look-SAM [19] to reduce the time overhead.

Training procedure introspection In Table 6, we com-
pare DyTox+ and DyTox++ on CIFAR100 in a joint set-
ting (no continual) and in a continual setting with 50 steps.
In the joint setting, our model slightly benefits from both
MixUp and ASAM: the gain is limited (+1.79 p.p.). On the
other hand, those two methods greatly improve the extreme
continual setting of 50 steps (+6.42 p.p.). This shows that
the gain is not due to absolute improvements of the model
performance. Moreover, using the Chaudrhy et al.’s forget-
ting [3] measure, we compare how much a model has for-
gotten relatively to its previous tasks. This metric is there-
fore agnostic to absolute performance improvements. Dy-
Tox had a forgetting of 33.15%, DyTox+ of 31.50%, and
DyTox++ of 30.47%: a total reduction of 2.68 p.p . This
validates our novel training procedures that are particularly
efficient for continual learning.
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10 steps 20 steps 50 steps
Methods #P Avg Last #P Avg Last #P Avg Last
ResNet18 Joint 11.22 - 80.41 11.22 - 81.49 11.22 - 81.74
Transf. Joint 10.72 - 76.12 10.72 - 76.12 10.72 - 76.12
WA [31] 11.22 69.46± 0.29 53.78 11.22 67.33± 0.15 47.31 11.22 64.32± 0.28 42.14
DER w/o P [28] 112.27 75.36± 0.36 65.22 224.55 74.09± 0.33 62.48 561.39 72.41± 0.36 59.08
DyTox 10.73 73.66± 0.02 60.67± 0.34 10.74 72.27± 0.18 56.32± 0.61 10.77 70.20± 0.16 52.34± 0.26

DyTox+ 10.73 75.54± 0.10 62.06± 0.25 10.74 75.04± 0.11 60.03± 0.45 10.77 74.35± 0.05 57.09± 0.13

DyTox++ 10.73 77.10± 0.08 64.53± 0.08 10.74 76.57± 0.18 62.44± 0.22 10.77 75.45± 0.19 58.76± 0.28

Table 4: Results on CIFAR100 averaged over three different class orders. WA and DER w/o P results are reported from
[28]. DyTox+ uses MixUp in addition of the DyTox strategy, DyTox++ further adds a sharpness-aware minimization [16].

Methods #P top-1 top-5
Avg Last Avg Last

ResNet18 joint 11.22 - - - 95.1
Transf. joint 11.00 - 79.12 - 93.48
WA [31] 11.22 - - 91.00 84.10
DER w/o P [28] 112.27 77.18 66.70 93.23 87.52
DyTox 11.01 77.15 69.10 92.04 87.98
DyTox+ 11.01 79.22 69.06 93.72 88.82
DyTox++ 11.01 80.76 72.46 94.40 90.10

Table 5: Results on ImageNet-100 with 10 steps of 10 new
classes each. WA and DER w/o P results are reported from
[28]. DyTox+ uses MixUp in addition of the DyTox strat-
egy, DyTox++ further adds a sharpness-aware minimizer.

Joint (1 step) 50 steps

Training Last (↑) Last (↑) Forgetting (↓)
DyTox 76.12 52.34 33.15
DyTox+ 77.51+1.39 57.09+4.75 31.50-1.65

DyTox++ 77.91+0.40 58.76+1.67 30.47-1.03

Table 6: “Last” accuracy and forgetting [3] on CIFAR100
for the joint (1 step, no continual) and 50 steps settings.

A.4. Patch size effect on forgetting

Our model is the first application of transformers for con-
tinual computer vision. A key component of the transformer
architecture is the patch tokenizer. The number of patch to-
kens in an image is determined by the patch size: a larger
patch size means less tokens, and vice-versa. We wondered
about the effect of the patch size on forgetting and tested
three different kind of patch sizes in Table 7. Echoing re-
sults in vision transformers [5, 25], a smaller patch size (4
vs. 8 and 16) performs best in a joint training. However, the
forgetting defined by Chaudhry et al. [3] is relatively simi-
lar, with 33.15% for a patch of size of 4, and 33.20% for a
patch size of 16. Therefore, we argue that the transformer
architecture is hardly sensitive to the patch resolution w.r.t
its forgetting in continual learning.

Joint (1 steps) 50 steps
Patch size Last (↑) Last (↑) Forgetting (↓)

4 76.12 52.34 33.15
8 67.65 43.93 35.44
16 50.15 31.49 33.20

Table 7: Patch size effect on continual for the joint (1
step, no continual) and 50 steps settings on CIFAR100. We
choose a patch size of 4 for our main experiments: yet, it
has only few impact on forgetting.

A.5. ResNet backbone

DyTox is made of two main components: the SABs and
the unique TAB. The TAB structure, taking in input both
patch tokens and a task token, is crucial to our strategy. Yet,
the SAB could be of any kind of features extractor, based
on convolutions or attentions. Following the hybrid net-
work proposed in ablations by Dosovitskiy et al. [5], we
tried to replace the collection of SABs by a ResNet18. The
final features of the ResNet, before global pooling, of shape
(W ×H ×D) can be seen as W ×H tokens of D dimen-
sion. We made a few modifications to this ResNet to boost
its performance, namely removed the fourth and ultimate
layer, and added a pointwise convolution with 504 output
channels (so it can be divided by the 12 attention heads of
the TAB), a batch normalization [12], and a ReLU activa-
tion. These simple modifications are sufficient for our proof
of concept, and thus we also didn’t tune deeply this model.
We display in Table 8 the comparison of the two backbones
on CIFAR100 50 steps: (1) with ResNet, and (2) with SABs
(DyTox). Performances are slightly lower than DyTox with
SABs, however, they are still significantly higher than pre-
vious state-of-the-art like WA [31], especially in “Last” ac-
curacy. Moreover, the parameters count is comparable to
DyTox. This experiment shows that our DyTox framework,
while designed with a transformer backbone in mind, is also
efficient on non-token-based architectures such as a ResNet.

3



Encoder #P Avg Last
ResNet 10.68 68.53 50.05
SABs 10.77 70.20 52.34

Table 8: Hybrid network on CIFAR100 50 steps. While
the features extractor is made of SABs in DyTox, here
we instead use a modified ResNet18. Our framework still
works well with a convolution-based approach.

CIFAR100 ImageNet100
Top-1 Top-5

Task decoder Avg Last Avg Last
Residual Adapters [22] 70.00 52.38 91.25 85.00
FiLM [20] 69.42 54.05 89.49 81.40
TAB (ours) 70.20 52.34 92.04 87.98

Table 9: Alternative task conditioner on CIFAR100 50
steps and ImageNet100 10 steps. While the simpler Resid-
ual Adapters and FiLM perform similarly to our TAB on
CIFAR100, they forget significantly more on the complex
ImageNet100.

A.6. Alternative task decoders

We investigate here other approaches for conditioning
features to the different tasks. Residual Adapters [22] adds
a different residual branch made of a pointwise convolu-
tion for each domain the model is learned (e.g. CIFAR then
ImageNet then SVHN). This model needs the task/dataset/-
domain identifier at test-time to determine which residual to
use. For VQA task [1], FiLM [20] proposes to modify the
visual features using the the textual query.

We adapt these two feature conditioning strategies for
our transformer backbone architecture. We perform a global
token pooling after the ultimate SAB, and apply for each
learned task, a residual adapter or a FiLM. Residual adapter
in our case is a MLP, and FiLM parameters are directly
learned. As for DyTox, we forward each task-specific em-
bedding to the respective task-specific classifier. We show-
case the continual performance in Table 9 on CIFAR100 50
steps and ImageNet100 10 steps. On the former dataset,
smaller and easier, the residual adapters and FiLM have
similar performance as our TAB approach. On the other
hand, as soon as the task complexity increases with the
more detailed ImageNet100 dataset, FiLM and Residual
adapter based conditioning strategies forget significantly
more than our complete DyTox framework: TAB outper-
form the Residual Adapters by +2.98 p.p in “Last” top-5 ac-
curacy and FiLM by +6.58 p.p .
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