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Here we describe the architectural details of the proposed
BIPNet (Sec. 1), and present additional visual comparisons
with existing state-of-the-art approaches for burst SR and
burst de-noising (Sec. 2 and Sec. 3).

1. Network Architecture Details

1.1. Edge Boosting Feature Alignment (EBFA)

The proposed feature processing module (FPM) consists
of three residual-in-residual (RiR) [?] groups. Each RiR
is made up of three RGCAB and each RGCAB contains a
basic residual block followed by a global context attention
as shown in Fig. 2 (a) of the main paper. Although, the
deformable convolution layer is shown only once in the Fig.
2 (b) for simplicity, we apply three such layers to improve
the feature alignment ability of the proposed EBFA module.

1.2. Pseudo Burst Feature Fusion (PBFF)

The proposed PBFF is as shown in Fig. 3 (a) in main
paper. It consists of multi-scale feature (MSF) extraction
module which is made up of a light-weight 3-level U-Net
[5]. We employed one FPM (with 2 RiR and 2 RGCAB in
each RiR) after each downsample and upsample convolu-
tion layer. Number of convolution filters are increased by a
factor of 1.5 at each downsampling step and decreased by
the rate of 1.5 after each upsampling operation. We simply
add features extracted at each level to the upsampled fea-
tures via skip connections.

1.3. Adaptive Group Up-sampling (AGU)

Our AGU module is shown in Fig. 3 (c) in the main pa-
per. It aggregates the input group of pseudo bursts and pass
them through a bottleneck convolution layer of kernel size
1×1 followed by a set of four parallel convolution layers,
each with kernel size of 1×1 and 64 filters. Further, the
outputs from previous step are passed through the softmax
activation to obtain the dense attention maps.

2. Additional Visual Results for Burst SR
The results provided in Fig. S1 and Fig. S2 show that

our method performs favorably on both real and synthetic
images for the scale factor ×4. The true potential of the
proposed approach is demonstrated in Fig. S3, where it suc-
cessfully recovers the fine-grained details from extremely
challenging LR burst images (that are down-scaled by a fac-
tor of ×8).

3. Additional Results for Burst Denoising
The results provided in Fig. S4 and Fig. S5 show that

our method performs favorably on both grayscale [4] and
color [6] noisy images. Specifically, it can recover fine de-
tails in the outputs and is more closer to the ground-truth
compared to existing state-of-the-art approaches.
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Base frame DBSR [1] LKR [3] MFIR [2] BIPNet (ours)

Figure S1. Comparisons for ×4 burst super-resolution on SyntheticBurst dataset [1]. Our BIPNet produces more sharper and clean results
than other competing approaches (specifically the marked green box regions).

Base frame DBSR [1] MFIR [2] BIPNet (Ours) Ground-truth

Figure S2. Comparison for ×4 burst SR on real BurstSR dataset [1]. The crops shown in red boxes (in the input images shown in the
left-most column) are magnified to illustrate the improvements in restoration results. The reproductions of our BIPNet are perceptually
more faithful to the ground-truth than those of other methods.



Base frame BIPNet (Ours) Ground-truth

Figure S3. Results for ×8 SR on images from SyntheticBurst dataset [1]. Our method effectively recovers image details in extremely
challenging cases.



BPN [6] MFIR [2] BIPNet (Ours) Ground-truth

Figure S4. Comparisons for burst denoising on color datasets [6]. The crops shown in green boxes (in the input images shown in the
left-most column) are magnified to illustrate the improvements in restoration results. Our proposed BIPNet produces more sharper and
clean results than other competing approaches.

BPN [6] MFIR [2] BIPNet (Ours) Ground-truth

Figure S5. Comparisons for burst denoising on gray-scale [4]. The crops shown in green boxes (in the input images shown in the left-most
column) are magnified to illustrate the improvements in restoration results. Our BIPNet produces more sharper and clean results than other
competing approaches.


