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Appendix
We first provide additional experimental details, which

include dataset details, implementation details and baselines’
descriptions. Next, we provide additional experimental re-
sults in terms of further qualitative and quantitative analysis.
Finally, we discuss the potential future works.

1. Additional Experimental Details
1.1. Dataset Details

We performed experiments on the following datasets:
synthetic Shapenet [1], real-world Pascal 3D+ [17], real-
world CUB-200-2011 [16] and real-world Pix3D chairs [13]:

Shapenet: We used car, planes and chairs category of the
Shapenet v2 dataset [1] for our experiments. Shapenet Im-
age dataset is generated by rendering the synthetic CAD
models from different sampled viewpoints. Shapenet CAD
models are associated with texture files (generally possess-
ing only diffuse texture component). For all experiments,
we followed SDF-SRN’s data settings (mentioned in their
paper section 4.1 and Appendix section B.1). To summarize:
we used 2830 training, 809 validation and 405 test CAD
model for airplanes, 2465 training, 359 validation and 690
test CAD models for cars category and 4744 training, 678
validation and 1356 test CAD objects for chairs category.

Pascal3D+: Pascal3D+ [17] is a dataset of real-world cam-
era images with annotated 3D CAD models. Compared to
Shapenet, Pascal3D+ data is challenging as camera images
are captured in real-world scenarios with variable lightning
conditions, variable object occlusions, diverse object tex-
tures etc. We follow SDF-SRN’s data settings for Pascal3D+
dataset (mentioned in their paper [10] section 4.2 and ap-
pendix section B.2). To summarize the data-splits: we used
991 training and 974 validation examples for airplane cate-
gory, 2847 training and 2777 validation examples for cars
category, and 539 training and 514 validation examples for
chairs category. The object silhouettes used both during
training and test phases to mask out the foreground object
RGB from the background are generated by rendering a
fixed set of CAD models. Since the same CAD models are
used to generate object silhouettes both during training and
testing, the dataset posseses a bias (highlighted in Tulsiani

et al. [15] Appendix A2.2). While prior work [2, 10] show-
case generalization results only on this biased dataset, we
address this issue by using silhouette masks generated by
an off-the-shelf instance segmentation network [9] as done
by Tulsiani et al. [15]. Results on the unbiased Pascal3D+
planes dataset are shown in Figure 13. For results on unbi-
ased chairs dataset, refer to Pix3D results (Figure 18, 19).

Pix3D chairs dataset: Similar to Pascal3D+ [17] dataset,
Pix3D dataset [13] is a real-world dataset, containing 2D
image to 3D CAD model mappings. However, unlike Pas-
cal3D+ dataset, (a) the 3D CAD models align better with
the 2D images, (b) different set of CAD models are used
for training and test set images, therefore the dataset is un-
biased. Some images of the Pix3D chairs dataset are highly
occluded/ truncated. We removed such images using the
annotated truncation tag associated with each image and
also by manual filtering. Overall, we used 2196 Pix3D chair
images for training and 637 chair images for test. Since the
overall dataset is significantly small (compared to tens of
thousands of images in shapenet dataset), we augment Pix3D
training set with the 539 Pascal3D training chair images. To
highlight, this dataset is still significantly smaller consid-
ering the amount of variations (in terms of light, material,
texture) present in the real-world image collection. Also,
since each CAD model is rendered at multiple viewpoints to
generate a 2D-3D mapping, the overall 3D information used
to train the reconstruction networks is much smaller.

CUB-200-2011 dataset: We used the annotated CUBS
dataset released alongside the CMR [8] codebase. Overall,
the training set has 5964 images and the test set has 2874
images. Each image is associated with a silhouette map
and a weak-perspective camera pose generated using 2D
annotated keypoints and SFM registration of the keypoints.
Please refer to CMR [8] (section 3.1) for more details.

1.2. Implementation Details

Our deformable reconstruction pipeline (as shown in
paper Figure 2) consists of DeformNet, Canonical Shape
Generator and (an LSTM-based) Differentiable Renderer
modules. We need to ensure that each module performs
its desired task, despite the lack of explicit supervision.
Simply jointly training the three modules fails to ensure
that, and hence results in poor performance. In order to
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effectively train these modules, we follow a curriculum
learning strategy. We split the training phase into two main
stages and two intermediate pre-training stages:

In Stage 1, we directly learn to reconstruct the 3D shape
(in form of signed-distance field) given the corresponding
input image captured from a known input viewpoint. We
adopt SDF-SRN [10] for this task and train the shape
generator module 1, image encoder and the differentiable
renderer module in this stage. Given an input image, we first
map it to a latent-code using Imagenet pre-trained Resnet
encoder [7]. The latent-code is used by a hyper-network to
generate the weights of the shape generator module. The
shape generator module then learns to map any 3D point
in the object space to its corresponding SDF value. The
differentiable renderer module is also trained alongside
to render the learned geometry from the given input
viewpoint. It is an LSTM module which takes as input
the intermediate-level features from the shape generator
module (corresponding to the sampled 3D point) and
predicts the ray marching step along the input ray direction.
Using the 3D point and the ray-marching step, the next
point along the input ray direction is generated. The
above mentioned procedure is then repeated for a fixed
number of ray-marching steps. In order to ensure that shape
generator module can operate on higher-dimensional input
(3D point + point features) in Stage 2, we additionally
pass “un-conditioned” point-features as input to the shape
generator module. These point-features (4-dimensional
in our experiments) are generated by simply passing the
input 3D points through a two-layer MLP (which is not
conditioned on the input-image). Instead of passing the
3D points plus the point features to the shape generator
network, we pass the concatenation of 3D points, their
position encoding and the positional encoding of the point
features as input to the network.

In Stage 2, we train the DeformNet module, while
fine-tuning the image encoder, shapenet generator module
and the differentiable render. The DeformNet module takes
as input a 3D point in the object space and maps it to a
higher-dimensional (7-dimensional in our experiments)
canonical point (3D point deformation + 4D object-space
point features) using the learned higher dimensional
deformation field. Alongside predicting the deformation
field, it also predicts the view-independent RGB value for
the input 3D point. Next, given the higher-dimensional
canonical point, the shape generator module learns to
predict the corresponding SDF value. In stage 2, the
shape generator module only focuses on reconstructing the

1In Stage 1, the shape generator module is trained to reconstruct any
3D shape given the corresponding camera image. In stage 2, this shape
generator module is fine-tuned for reconstructing only the canonical shape
and is thus termed as Canonical Shape Generator.

canonical 3D shape, and hence is termed as the canonical
shape generator. The differentiable renderer in stage 2
takes as input the object-space features of the sampled
3D point (sampled along the input ray) as learned by the
DeformNet. Like stage 1, weights of both DeformNet
and Canonical Shape Generator are learned through
hyper-networks. Unlike Stage 1, where the hyper-network
for the shape generator is conditioned on the input image
latent-code, the weights of the canonical shape generator are
predicted by a hyper-network conditioned on a canonical
shape latent-code (which is optimized jointly). The
canonical shape-latent code is initialized by the mean
of all training images’ latent codes predicted in Stage 1.
Like the shape generator, the input to the Deformnet is
the concatenation of the 3D point and its positional encoding.

Pre-training phases: Following SDF-SRN [10], prior to
Stage 1 training, we first pre-train the shape reconstruction
module to predict the SDF-space of a zero centered 3D
sphere (conditioned on random latent code in place of
image-based latent code used in Stage 1). This helps
the network better learn the 3D object signed-distance
fields in stage 1. Prior to Stage 2 (and post stage 1
training), we overfit the DeformNet module to deform
points belonging to the initial canonical space (SDF space
generated using initial canonical shape-latent code and
the pre-trained shape generator module) to a 3D sphere,
such that SDF of the initial point in the canonical space
is equal to the SDF of the deformed point w.r.t the 3D sphere.

Architecture details: We now provide the architecture
details for the three modules: The shape generator module
is implemented as an MLP with two output heads, one used
to predict the SDF value for the input 3D point and the
other used to predict the point’s RGB value (during stage
1). The shared MLP backbone between the two output
heads has multiple linear layers with LayerNorm and ReLU
activation, while the output heads are just linear layers.
The weights and the biases for each layer are generator
by different hyper-networks, which themselves are MLPs.
The high-level architecture is adopted from SDF-SRN [10].
The architecture for the Deformnet is similar to the shape
generator module, with three output heads learning 3D point
deformation, 4D point features and the RGB value for each
input 3D point. For the LSTM module of the differentiable
renderer [12], we kept the output and the hidden state
dimension to be 32.

1.3. Baselines

SDF-SRN [10]: We directly used the open-sourced code-
base and pretrained models of SDF-SRN [10] to generate
the results. Note, the open-sourced pre-trained Pascal3D+
models belong to the default biased Pascal3D+ dataset.
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Figure 9. Discontinuities in a deformation field: (Left) Example
of continuous mapping of a set of 3D points from source chair
to target chair. (Right) Example of dis-continuous mapping from
source to target chair.

SoftRas [11]: We used the released codebase and trained
the SoftRas shape reconstruction model on the Shapenet
dataset. For fair comparison, we commented out the multi-
view consistency loss in the open-source implementation and
rather rendered the reconstructed mesh only at the source
viewpoint to supervise the training pipeline.

CMR [8]: We used the released codebase for training
CMR [8] on Pascal3D+ dataset. For fair comparison, we
did not use the key-point loss and only used the RGB and
the silhouette loss for supervising the pipeline. Prior to
training, we initialized their mean shape prior using the 3D
mesh template shared alongside the CMR codebase. For
chairs category, because of the large intra-category topolog-
ical variations, we found out that using a template mesh
(which was not isomorphic to sphere) for initialization of
the mean shape leads to poor training and hence poor recon-
structions. Therefore, (following SDF-SRN [10]) we used a
3D sphere to initialize the mean shape for Pascal3D+ chairs
reconstruction task.

1.4. Metrics

We used symmetric Chamfer distance (CD) and Earth
Mover’s distance (EMD) to quantitatively measure the fi-
delity of the reconstructed meshes. CD is defined as the sum
of squared distance of each 3D point on the ground-truth
shape (X) to the closest surface point on the reconstructed
shape (Y) and vice-versa.

CD(X,Y) =
1

2|X|
∑
x∈X

min
y∈Y

∥x− y∥2 +

1

2|Y|
∑
y∈Y

min
x∈X

∥x− y∥2

EMD is defined as the sum of the squared distance of
each point in the GT point cloud (X) to its bijective mapping
in the reconstructed point cloud.

EMD(X,Y) = min
ϕ:X→Y

∑
x∈X

∥x− ϕ(x)∥2

We also used Precision and Recall as robust alternatives
[14] to chamfer distance.

Figure 10. Visualization - Topologically-aware deformation
field: The learned deformation fields map similar structures/ parts
of different object instances to similar canonical space regions.
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1
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∥x− y∥2 <= t
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Recall(X,Y) =
1
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]

We set the true-positive threshold to 0.1.

2. Analysis: Topologically-Aware Deformation
Field

Figure 9 motivates the need of the topologically-aware
deformation field. Our approach reconstructs the target shape
by mapping 3D points from the target space to the source
space using the learned deformation field. Since the defor-
mation field is learned implicitly using an MLP, the inductive
continuous nature of the MLP would deform 3D points con-
tinuously from the target space to the source space. Thus
such a deformation field can truly reconstruct the target shape
from the source shape only when both the shapes are of sim-
ilar topologies (Figure 9 left). To over come this topological
restriction, we take inspiration from Level Set Methods and
learn additional per-point features which potentially guide
the network on how to modify the deformation field to truly
reconstruct the target shape from the source.

3. Additional Experimental Results
3.1. Qualitative Analysis

Single-View 3D Reconstruction on Shapenet: Figure 15,
Figure 16 and Figure 17 compare our proposed approach



with SDF-SRN [10] baseline on the Shapenet dataset’s cars,
planes and chairs category respectively. Compared to the
mesh-based baseline (SoftRasterizer [11], as shown in main-
paper Figure 6) both our proposed approach and SDF-SRN
[10] perform significantly well, thanks to the use to neural
implicit modeling. Thanks to the inherently learned category-
specific structural priors (inherent property of deformable
models) our shapes have fewer artifacts compared to SDF-
SRN’s shapes (see SDF-SRN’s noisy reconstructions in row
1 chair 1, row 2 chair 2(sofa), row 5 chair 1 of Figure 16).

Single-View 3D Reconstruction on CUBS-200-2011:
Figure 11 and Figure 12 showcase additional qualitative
comparisons between SDF-SRN [10] and our approach on
the CUBS-200-2011 dataset. Our approach showcase consis-
tent improvement over prior works in terms of (a) less-noisy
reconstructions (row 3 right, row 4 left), (b) better articula-
tions (row 2 left, row 4 right) and (c) better capture of overall
geometric structure (reconstructed beaks, foots, legs etc).

Single-View 3D Reconstruction on Pascal3D+ (default):
Figure 20, Figure 21 and Figure 22 compare our proposed
approach with SDF-SRN [10] baseline on the Pascal3D+
dataset’s cars, planes and chairs category respectively. Com-
pared to Shapenet, Pascal3D+ is a challenging real-world
dataset with object images having diverse textures, captured
under variable environmental (lightning) conditions and un-
der variable nature of object occlusion. As a result, SDF-
SRN reconstructions on Pascal3D+ are much noisier com-
pared to their results on Shapenet (see ripples on car surfaces
in Figure 20 and noisy reconstructed chairs in Figure 22).
By learning to deform all object instances to a particular
category-level canonical shape, we are able to regularize
the reconstruction procedure and hence generate smoother
shapes with much fewer artifacts. Moreover, compared to
SDF-SRN [10], our reconstructions are able to capture the
finer shape details captured in the input image (eg: recon-
structed front wheel on planes in row 1, row 2 and row 4,
reconstructed plane propeller in row 6 of Figure 21). Our
shapes also maintain the topological details of the GT shape
underlying the input image (see chairs in Figure 22).

Single-View 3D Reconstruction on Pascal3D+ (unbiased)
planes: Figure 13 and Figure 14 showcases additional re-
sults on the unbiased Pascal3D+ planes dataset. While, in
comparison to the reconstructed planes of the default Pas-
cal3D dataset, the unbiased Pascal3D reconstructions are of
comparatively low fidelity, our approach still demonstrates
significant improvement (in terms of less noisy reconstruc-
tions with better overall 3D structure) over the prior state
of the art works of CMR [8] (as shown in paper Figure 3)
and SDF-SRN [10]. The last two rows of Figure 13 and
Figure 14 showcase the examples where the input images
(captured at the specific input viewpoints) do not provide

Method # training Chamfer ↓
examples acc. cov. overall
500 0.475 0.422 0.448
1000 0.442 0.385 0.413SDF-SRN [10]
2000 0.423 0.349 0.386
500 0.495 0.402 0.448
1000 0.462 0.366 0.414TARS (ours)
2000 0.423 0.347 0.385

Table 3. Dataset size ablation: # training examples vs reconstruc-
tion metrics.

Method Implicit Dense Chamfer ↓
3D Shape Correspondences acc. cov. overall

SDF-SRN [10] ✓ 0.352 0.315 0.333
DIT [18] ✓ ✓ 0.386 0.326 0.356
DIF [4] ✓ ✓ 0.376 0.0308 0.342
TARS (ours) ✓ ✓ 0.353 0.312 0.332

Table 4. Comparison with Deformable Implicit Reconstruction
approaches on ShapeNet Chairs dataset

enough geometric cues to the reconstruction pipeline to en-
able high-fidelity reconstruction. The significantly smaller
size of the Pascal3D+ planes dataset is potentially the core
reason behind such failures.

Single-View 3D Reconstruction on Pix3D Chairs: We
showcase additional qualitative comparison on the Pix3D
chairs dataset in Figure 18 and Figure 19. Figure 18 high-
lights the synthetic to real generalization capability (trained
on Shapenet, tested of Pix3D) of the reconstruction ap-
proaches. For Figure 19, we trained both our approach
and SDF-SRN [10] on the combined Pascal3D+ and Pix3D
train dataset. While the results are much noisier (poten-
tially because of smaller but challenging training set), the
reconstructed shapes capture the overall geometry of the GT
shapes and also maintain the topological structures of the
GT chairs the majority of the times (see row 1, row 3, row 5
of Figure 19). Like Pascal3D planes, the failure cases for the
Pix3D chairs occur usually for input observations captured
at some particular camera viewpoints which do not provide
the reconstruction pipeline with enough geometric cues.

3.2. Quantitative Analysis

Dataset size ablation: We ablate the performance of our
proposed approach as a factor of number of training exam-
ples on the Shapenet chairs dataset. For all the experiments
under this ablation, we randomly sample a subset of CAD
models. The training data is then generated by rendering
each CAD model at only one randomly sampled viewpoint.
From Table 3, we see that both our proposed approach and
SDF-SRN [10] consistently performs well on all subsets of
the Shapenet chairs dataset. Furthermore, increase in the
dataset size does help the model achieve higher shape fi-
delity (in terms of reconstruction metrics). To re-emphasize
on the need of larger training datasets: we think that compar-



atively less fidelity of the reconstructed real-world shapes
(Pascal3D+, Pix3D) is because of the large variations (tex-
tural, environmental lightning, structural) in the real-world
objects, but much smaller training datasets.

Comparison with Deformable Implicit Reconstruction
approaches on Shapenet chairs dataset: Recently, Zheng
et al. [18] and Deng et al. [4] learned category-specific de-
formation fields and signed-distance fields jointly. While
Zheng et al. [18] (DIT: Deep Implicit Templates) learned
a 3D deformation field, Deng et al. [4] (DIF: Deformed
Implicit Fields) learned a 3D deformation field + SDF cor-
rection field to handle the topological variations. Both the
approaches required dense 3D supervision during training.
In comparison to them, we address the task of single-view 3D
reconstruction by learning higher-dimensional topologically-
aware deformation fields without using any form of dense
supervision (multi-view images or dense 3D). In Table 4, we
compare single-view analogs of their proposed approaches.
We trained two ablations of our proposed approach: (a)
single-view reconstruction using only 3D deformation fields
(similar to the MLP-based deformation approach of Zheng
et al. [18]), (b) single-view 3D reconstruction using 3D de-
formation fields and 3D SDF correction fields (similar to
Deng et al. [4]). For both ablations, we do not learn any
additional point features. We trained both the ablations using
only single-view supervision exactly same as our proposed
approach. From Table 4, we can see that solely learning
deformation fields results in drop of the reconstruction met-
ric (chamfer) compared to the reconstruction only approach
(SDF-SRN). Adding SDF-correction fields on top of 3D de-
formation fields does ease the task of implicit deformation
estimation and hence leads to better reconstructions. Our
proposed approach performs better than both the deforma-
tion based implicit reconstruction approaches and is also
at par with reconstruction only SDF-SRN approach (while
learning deformations for free).

4. Future Work

While, overall our results represent an encouraging step
towards generalization of reconstruction systems to the inter-
net of images, there is still more future work to be done to
achieve scalable generalization. The immediate next step to
unlock internet generalization is the removal of the require-
ment of known poses during training. Other directions could
be the exploration of joint learning among multiple object
categories, and efficient incorporation of adversarial learn-
ing to enable high-fidelity reconstruction even from input
images captured at challenging viewpoints. Also, as we have
witnessed the role of large annotated 2D datasets (like Ima-
genet [3]) in rise of self-supervised learning in 2D [5,6], any
potential work of generating much larger unbiased datasets
like Pix3D could turn out to be a major step towards scalable

single-view reconstruction.

5. Statement on Potential Negative Impact
We feel that the field of single-view 3D reconstruction is

still in its nascent stage. So, we do not think this work has
any immediate potential negative impact.
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Figure 11. 3D Reconstruction on CUB-200-2011 from Single 2D Image
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Figure 12. 3D Reconstruction on CUB-200-2011 from Single 2D Image
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Figure 13. 3D Reconstruction on Pascal3D+ (unbiased) Airplanes from Single 2D Image



Input Image SDF-SRN Ours

Figure 14. 3D Reconstruction on Pascal3D+ (unbiased) Airplanes from Single 2D Image



Image SDF-SRN Ours
Figure 15. 3D Reconstruction on Shapenet Cars from Single 2D Image Our approach amtches the shape fidelity of SDF-SRN while
leveraging cross-instance correspondences for free.
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Figure 16. 3D Reconstruction on Shapenet Chairs from Single 2D Image As can be seen, our reconstructions are less noiser, thanks to
the learned deformation field which acts as a regularizer.
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Figure 17. 3D Reconstruction on Shapenet airplanes from Single 2D Image
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Figure 18. 3D Reconstruction on Pix3D Chairs from Single 2D Image (trained on Shapenet, tested on Pix3D val)
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Figure 19. 3D Reconstruction on Pix3D Chairs (trained on Pix3D train + Pascal3D chairs, tested on Pix3D val)
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Figure 20. 3D Reconstruction on Pascal3D+ (default) Cars from Single 2D Image
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Figure 21. 3D Reconstruction on Pascal3D+ (default) Airplanes from Single 2D Image
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Figure 22. 3D Reconstruction on Pascal3D+ (default) Chairs from Single 2D Image: Our approach not only yields high fidelity
reconstructions, but also provides with dense cross-instance correspondences.
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