
A. PyTorch implementation

Our proposed algorithm can be easily integrated into ex-
isting deep learning architectures. Here, we provide our
PyTorch [30] implementation of this module, see Fig. 8.
The forward pass is the standard Sinkhorn matrix scaling
algorithm [9] with a robust log-space implementation. The
backward function contains an implementation of our Al-
gorithm 1.

B. Additional experiments

B.1. Gradient accuracy

Theorem 5 states that the error of our backward pass in
Algorithm 1 can be bounded by the error of the forward
pass in Eq. (6). We now assess the magnitude of this error
in practice by revisiting the experiments on image barycen-
ter computation and number sorting from Sec. 5. Since
the ground truth gradients are unknown in general, we de-
fine the (approximate) ground truth gradients as ∇Cℓ∗ :=
∇Cℓ(τmax),∇aℓ

∗ := ∇aℓ
(τmax) for τmax := 10, 000. In

Fig. 9, we compare the error of our approach to AD, aver-
aged over all settings and iterations from the experiments in
Fig. 4 and Fig. 6 respectively. These results show clearly
that, on average, our approach produces more accurate gra-
dients than AD. Intuitively, ours yields optimal gradients
for a suboptimal forward pass P ∗ ≈ S

(τ)
λ , see Theorem 5,

whereas AD yields approximate gradients for an approx-
imate forward pass. To further illustrate this point, we
show a qualitative comparison of the gradients of both ap-
proaches on the task of image barycenter computation in
Fig. 10. These results demonstrate the usefulness of our
custom backward pass. Our gradients and the ground truth
start disagreeing in certain regions for t ≥ 50, but only af-
ter the barycenter optimization converges. Compared to the
vanilla AD approach, the gradients are much closer to the
ground truth and therefore more useful.

B.2. MNIST image clustering

We mainly consider the barycenter problem described
in Sec. 5.2 a useful toy example to assess the stability of
implicit differentiation in comparison to AD. On the other
hand, the interpretation as a generic optimization problem
allows us to trivially extend it to related tasks like image
clustering. To that end, we apply the k-means algorithm
which alternates between computing cluster centroids (by
minimizing Eq. (14)) and assigning all images bi to their
closest centroid (defined as the centroid with minimum dis-
tance d, Eq. (15)). We show results on the 60k images from
the MNIST dataset [24] in Fig. 11.

B.3. Details on permutation baselines

Gumbel-Sinkhorn networks. As outlined in Sec. 5.3, the
goal of the Gumbel-Sinkhorn method [28] is to learn how to
sort a set of input elements {x1, . . . , xn}. To this end, the
cost matrix C is parameterized via a permutation-invariant
neural network architecture (set encoder), conditioned on
the input elements {x1, . . . , xn}. The matrix C, together
with marginals a = b = 1n are then passed through a
differentiable Sinkhorn layer.2 The final output P is a bis-
tochatic matrix which encodes an approximate permutation.
The training objective is a geometric loss, minimizing the
distance of the sorted elements xi to their natural ground-
truth ordering. At test time, the Hungarian algorithm [23]
is applied to the learned cost matrix C to obtain an exact,
hard permutation.

In Sec. 5.3, we show the concrete application of sorting n
real numbers, sampled randomly from the uniform distribu-
tion xi ∼ U(0, 1). More specifically, we consider separate
training and test sets of 4096 and 128 random sequences
each and report the error, defined as the proportion of incor-
rectly placed numbers in the test set, see Fig. 6. To provide
a more complete picture, we report quantitative results on
the task of generalizing to different test sets here. Specif-
ically, we train the vanilla GS method and our approach
for τ = 200 (the maximum number for which GS is be-
low the GPU memory limit) for n = 200 numbers sampled
from U(0, 1). We then investigate the error on test sets sam-
pled from different distributions xi ∼ U(s, t) with s < t in
Tab. 3. Even though the variance is quite high, these results
indicate that our method evidently helps to reduce overfit-
ting. Note, that the improved generalization is observed for
the setting τ = 200, n = 200 where the performance of
both methods on the standard test set is almost identical,
see Fig. 6.

RPM-Net. A number of recent works use the Sinkhorn
operator as a differentiable matching module for deep learn-
ing [13, 25, 39, 46, 47]. The standard strategy of such meth-
ods is to use a learnable feature extractor to obtain descrip-
tors FX ∈ Rm×p,F Y ∈ Rn×p on pairs of input objects
X and Y in a siamese manner. We can then define the cost
matrix C := D as the squared pairwise distance matrix
Di,j =

∥∥FX
:,i − F Y

:,j

∥∥2
2
. For fixed, uniform marginals a

and b, the Sinkhorn operator then yields a soft matching
P = Sλ(C,a, b) ∈ Rm×n between the two input objects.
The baseline method RPM-Net we consider in Sec. 5.3 uses
this methodology to obtain a matching between pairs of in-
put point clouds. As a feature extractor, it uses PointNet
[35] with a custom input task point cloud, see [47, Sec. 5.1]

2Strictly speaking, the choice of marginals a = b = 1n does not fit
in our framework, since we require a, b ∈ ∆n, see Eq. (1). However, we
can simply use a = b = 1

n
1n and scale the resulting transportation plan

P by a constant factor of n.



import torch

class Sinkhorn(torch.autograd.Function):
@staticmethod
def forward(ctx, c, a, b, num_sink, lambd_sink):

log_p = -c / lambd_sink
log_a = torch.log(a).unsqueeze(dim=1)
log_b = torch.log(b).unsqueeze(dim=0)
for _ in range(num_sink):

log_p -= (torch.logsumexp(log_p, dim=0, keepdim=True) - log_b)
log_p -= (torch.logsumexp(log_p, dim=1, keepdim=True) - log_a)

p = torch.exp(log_p)

ctx.save_for_backward(p, torch.sum(p, dim=1), torch.sum(p, dim=0))
ctx.lambd_sink = lambd_sink
return p

@staticmethod
def backward(ctx, grad_p):

p, a, b = ctx.saved_tensors
m, n = p.shape

grad_p *= -1 / ctx.lambd_sink * p
K = torch.cat((

torch.cat((torch.diag(a), p), dim=1),
torch.cat((p.T, torch.diag(b)), dim=1)),
dim=0)[:-1, :-1]

t = torch.cat((
grad_p.sum(dim=1),
grad_p[:, :-1].sum(dim=0)),
dim=0).unsqueeze(1)

grad_ab, _ = torch.solve(t, K)
grad_a = grad_ab[:m, :]
grad_b = torch.cat((grad_ab[m:, :], torch.zeros([1, 1], device=device,

dtype=torch.float32)), dim=0)
U = grad_a + grad_b.T
grad_p -= p * U
grad_a = -ctx.lambd_sink * grad_a.squeeze(dim=1)
grad_b = -ctx.lambd_sink * grad_b.squeeze(dim=1)

return grad_p, grad_a, grad_b, None, None

Figure 8. A PyTorch implementation of Algorithm 1.

U(1, 2) U(10, 11) U(100, 101) U(−1, 0)
Ours 0.2964± 0.0744 0.3340± 0.3059 0.3531± 0.1380 0.3552± 0.2116
Gumbel-Sinkhorn 0.3163± 0.0976 0.3620± 0.3179 0.3955± 0.1478 0.4678± 0.2526

Table 3. Number sorting generalization. We assess the capability of our approach (first row) and the vanilla Gumbel-Sinkhorn method
(second row) [28] to generalize to various test sets U(s, t) with s < t. We train both methods to sort sets of n = 200 numbers xi from the
uniform distribution on the unit interval U(0, 1) with τ = 200 Sinkhorn iterations. For each test set, we show the mean proportion of false
predictions, as well as the empirical standard deviation, obtained from 50 test runs per setting.
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Figure 9. Gradient accuracy. We empirically assess the accuracy of the error bound discussed in Theorem 5. Specifically, we show the
accuracy of the gradients ∇aℓ for the image barycenter experiment in Sec. 5.2 (top row) and ∇Cℓ for the number sorting experiment in
Sec. 5.3 (bottom row). While both distributions have a large overlap, the gradients from our approach (blue) are noticeably more accurate
than AD (orange) on average. Note that all comparisons show histograms on a log scale.

for more details. Using the obtained soft correspondences,
a simple SVD transformation then yields the optimal rigid
transformation between the two input point clouds. In or-
der to train their model, RPM-Net uses automatic differ-
entiation of the Sinkhorn layer. We can now demonstrate
that replacing AD with our backward algorithm improves
the performance. To that end, we revisit the experiments
from [47, Sec. 6]: We use 20 separate object identities of
the ModelNet40 dataset [44] as our train and test set respec-
tively. In Fig. 12, we now show a qualitative comparison
corresponding to the results in Tab. 2 in the main paper. On
the standard test set, both approaches produce comparable,
high-quality results. On the other hand, our method signif-
icantly improves the robustness when generalizing to noisy
data or partial views.
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∇aℓ – Ours

∇aℓ – AD

∇aℓ – g.t.

t = 0 10 20 30 40 50 60 t = 70

Figure 10. Image barycenter gradients. A qualitative comparison of our gradients (3rd row), the AD gradients (4th row), and the ground
truth gradients (last row) for the image barycenter experiment from Sec. 5.2. Specifically, we consider the task of interpolating between two
input images (1st row) with uniform interpolation weights w1 = w2 = 0.5. We show intermediate snapshots of the obtained barycenter
image (2nd row) for different numbers of gradient descent iterations t ∈ {0, . . . , 70} that result from minimizing the energy in Equation 14.

τ = 5

Ours

τ = 10 τ = 50 τ = 100

AD

Figure 11. MNIST k-means clustering. A comparison of implicit differentiation and AD on the task of k-means image clustering. For
both approaches, we show the predicted k = 25 clusters for τ ∈ {5, 10, 50, 100} Sinkhorn iterations. We choose more than 10 clusters to
capture several different appearances and styles for each digit. To make individual results more comparable, we use an identical random
initialization of the cluster centroids for all settings. For AD, the maximum permissible batch sizes for the 4 settings are 512, 256, 64, 32,
whereas the implicit differentiation algorithm consistently allows for a batch size of 1024.



Input Clean Noisy σ = 0.1 Partial 70%
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Figure 12. Point cloud registration. Additional qualitative examples of RPM-Net [47] and the augmented version with our custom
backward pass, see Algorithm 1. The increased stability of the gradients predicted by our algorithm directly translates into more robust
generalization results: Both methods are trained and tested on separate subsets of the 40 object categories in ModelNet40 [44], see [47,
Section 6] for more details. Both methods yield accurate predictions for the clean test data, as indicated by the corresponding quantitative
results in Tab. 2. On the other hand, our approach shows significant improvements when generalizing to noisy test data and partial inputs.



C. Proofs
In the following, we provide proofs of Lemma 1, Lemma 2, Theorem 3, Theorem 4 and Theorem 5 from the main paper.

C.1. Proof of Lemma 1

Proof. The function K contains the KKT conditions corresponding to the optimization problem in Eq. (4). The proposed
identity therefore follows directly from the (strict) convexity of Eq. (4), see [15]. Apart from the two equality constraints,
Eq. (3) contains additional inequality constraints Pi,j ≥ 0. Those are however inactive and can be dropped, because the
entropy term in Eq. (4) invariably yields transportation plans in the interior of the positive orthant Pi,j > 0, see [33, p.
68].

C.2. Proof of Lemma 2

Proof. The key for proving this statement is applying the implicit function theorem. We start by (a) showing that this indeed
yields the identity from Eq. (9), and then (b) justify why removing the last (m+n)-th equality condition from E is necessary.

(a) First of all, we can verify by direct computation that the matrix K from Eq. (9) corresponds to the partial derivatives of
the KKT conditions from Eq. (8)

K =

(
∂K(c,a, b,p,α,β)

∂
[
p;α;β

] )
−l,−l

, (16)

where the notation (·)−l,−l means that the last row and column is removed and where l = mn+m+ n. Furthermore,
K is invertible (since the solution lies in the interior Pi,j > 0, see [33, p. 68]), and the m + n − 1 columns of Ẽ
are linearly dependent, see (b). Consequently, the implicit function theorem states that K implicitly defines a mapping
(c,a, b) 7→ (p,α,β) whose Jacobian is

J =
∂
[
p;α; β̃

]
∂
[
c;−a;−b̃

] = −( ∂K
∂
[
p;α;β

])−1

−l,−l

(
∂K

∂
[
c;−a;−b

])
−l,−l︸ ︷︷ ︸

=Il−1

= −K−1. (17)

(b) As part of the proof in (a), we use the fact that the columns of Ẽ are linearly independent. Verifying this statement also
provides insight as to why removing the last row of b̃, β̃ and the last column of Ẽ is necessary. Intuitively, the columns
of E contain one redundant condition: The identity

m∑
i=1

Pi,n = 0 ⇐⇒ E⊤
:,m+np = 0, (18)

follows directly from the other m+ n− 1 conditions. More formally, we can take the kernel

ker(E⊤) =
{
P ∈ Rm×n|E⊤p = 0

}
, (19)

of E⊤ ∈ Rm+n×mn and observe that dim
(
ker(E⊤)

)
= (m − 1)(n − 1), see [6, Sec. 1]. The rank–nullity theorem

then implies that the dimension of the subspace spanned by the columns of E is of dimension mn− (m− 1)(n− 1) =
m+ n− 1. Consequently, removing the redundant condition in Eq. (19) from E yields the reduced Ẽ ∈ Rmn×m+n−1

with = m+ n− 1 linearly independent columns.

C.3. Proof of Theorem 3

Proof. This identity follows trivially from Lemma 2 by applying the chain rule

∇[c;−a;−b̃]ℓ =

(
∂
[
p;α; β̃

]
∂
[
c;−a;−b̃

])⊤

∇[p;α;β̃]ℓ = −K
−1∇[p;α;β̃]ℓ = K−1

[
−∇pℓ
0

]
. (20)

The last equality holds, since the loss ℓ does not depend on the dual variables α and β, see Fig. 2.



C.4. Proof of Theorem 4

Proof. We want to show that the gradients ∇Cℓ,∇aℓ,∇bℓ obtained with Algorithm 1 are equivalent to the solution of
Eq. (11). To that end, we start by applying the Schur complement trick to the block matrix K. This yields the expression

(
K−1

)
:,1:mn

=

[
λ−1 diag(p)

(
Imn + Ẽ

(
Ẽ⊤ diag(p)Ẽ

)−1
Ẽ⊤ diag(p)

)(
Ẽ⊤ diag(p)Ẽ

)−1
Ẽ⊤ diag(p)

]
, (21)

for the first mn columns of its inverse. In the next step, we can insert this expression in Eq. (11) and invert the linear system
of equations [

∇cℓ
−∇[a;b̃]ℓ

]
= K−1

[
−∇pℓ
0

]
= −

(
K−1

)
:,1:mn

∇pℓ. (22)

Further simplification yields the following identities for the gradients of C,a and b[
∇cℓ
∇[a;b̃]ℓ

]
=

[
−λ−1 diag(p)

(
Imn − Ẽ

(
Ẽ⊤ diag(p)Ẽ

)−1
Ẽ⊤ diag(p)

)
∇pℓ(

Ẽ⊤ diag(p)Ẽ
)−1

Ẽ⊤ diag(p)∇pℓ

]

=

[
−λ−1

(
diag(p)∇pℓ− diag(p)Ẽ∇[a;b̃]ℓ

)(
Ẽ⊤ diag(p)Ẽ

)−1
Ẽ⊤ diag(p)∇pℓ

]
, (23)

where the latter equality results from substituting the obtained expression for ∇[a;b̃]ℓ in the first block row. In the remainder
of this proof, we can show line by line that these expressions yield Algorithm 1. The main idea is to first compute the second
block row identity in Eq. (23) and then use the result to eventually obtain∇cℓ from the first block row:

Line 1 The first line defines the matrix T := P ⊙∇P ℓ via the Hadamard product ⊙. In vectorized form it corresponds to the
expression

t = diag(p)∇pℓ. (24)

Line 2 As detailed in Lemma 2, we remove the last equality condition from E to obtain Ẽ. Equivalent considerations require
us to introduce the truncated versions T̃ , P̃ of T ,P .

Line 3 The operator E⊤ then maps t to the vector

E⊤t =
[
1n ⊗ Im In ⊗ 1m

]⊤
t =

[
(1⊤

n ⊗ Im)t
(In ⊗ 1⊤

m)t

]
=

[
T1n

T⊤
1m

]
, (25)

that contains its row and column sums. In terms of the truncated Ẽ, the last row of Eq. (25) gets removed, thus

Ẽ⊤t =

[
T1n

T̃⊤
1m

]
=

[
t(a)

t̃(b)

]
. (26)

Line 4 A direction computation reveals that

E⊤ diag(p)E =

[
(1⊤

n ⊗ Im) diag(p)(1n ⊗ Im) (1⊤
n ⊗ Im) diag(p)(In ⊗ 1m)

(In ⊗ 1⊤
m) diag(p)(1n ⊗ Im) (In ⊗ 1⊤

m) diag(p)(In ⊗ 1m)

]
=

[
diag(P1n) P

P⊤ diag(P⊤
1m)

]
=

[
diag(a) P
P⊤ diag(b)

]
. (27)

The linear system in Line 4 of Algorithm 1 therefore yields the gradients∇[a;b̃]ℓ by inserting Eq. (24), Eq. (26) and (the
reduced version of) Eq. (27) into the second block row identity from Eq. (23).

Line 5 We can expand ∇b̃ℓ to ∇bℓ by appending zero ∇bnℓ = 0 as the last entry. Since b is constrained to the probability
simplex ∆n this gradient is exact for all entries, see the discussion in Sec. 4.4.



Line 6 Having computed the gradients ∇[a;b]ℓ, we can now insert them in the first row of Eq. (23). Here, the reduced and the
original expressions are equivalent

Ẽ∇[a;b̃]ℓ = E∇[a;b]ℓ (28)

because Line 5 specifies∇bnℓ = 0. Thus,

Ẽ∇[a;b̃]ℓ =
[
1n ⊗ Im In ⊗ 1m

]
∇[a;b]ℓ = 1n ⊗∇aℓ+∇bℓ⊗ 1m =: u, (29)

defines the vectorized version of U from Line 6.

Line 7 Putting everything together, we insert the identities from Eq. (24) and Eq. (28) into the first block row of Eq. (23)

∇cℓ = −λ−1
(
diag(p)∇pℓ− diag(p)Ẽ∇[a;b̃]ℓ

)
= −λ−1

(
t− diag(p)u

)
, (30)

which is equivalent to the matrix-valued expression in Line 7.

C.5. Proof of Theorem 5

Proof. The key for constructing the error bounds in Eq. (13a) and Eq. (13b) is finding a bound for the first-order derivatives
∂∇cℓ
∂p and ∂∇[a;b]ℓ

∂p . For brevity, we introduce the short-hand notation P̄ := diag(p). Furthermore, we define the projection
of x onto the column space of Ẽ as

ΠEx := argmin
y∈span(Ẽ)

∥x− y∥2P̄ = Ẽ argmin
z∈Rm+n−1

∥x− Ẽz∥2P̄ , (31)

where ⟨·, ·⟩P̄ := ⟨P̄ 1
2 ·, P̄ 1

2 ·⟩2. In matrix notation, Eq. (31) reads

ΠE = Ẽ
(
Ẽ⊤P̄ Ẽ

)−1
Ẽ⊤P̄ . (32)

Using Eq. (12a) and Eq. (12b) from the proof of Theorem 4, we can then rewrite the backward pass compactly as

∇[a;b̃]ℓ = Ẽ†ΠE∇pℓ, and (33a)

∇cℓ = −λ−1
(
P̄ (I −ΠE)∇pℓ

)
, (33b)

The first identity follows from Ẽ†Ẽ = I , since the columns of Ẽ are linearly independent (see part (b) of the proof of
Lemma 2 in Appendix C.2). Direct substitution of Eq. (12a) into Eq. (12b) immediately yields Eq. (33b). To differentiate
∇[a;b̃]ℓ and ∇cℓ, we apply the chain rule which in turn requires a closed-form expression for the derivative of the projection
operator ΠE . Since it is defined as the solution of an optimization problem, we apply the implicit function theorem to the
gradient of the objective in Eq. (31), i.e.

∇z

(
1

2
∥x− Ẽz∥2P̄

)
= Ẽ⊤P̄ Ẽz − Ẽ⊤P̄ x = 0. (34)

The Jacobian of the mapping p 7→ ΠEx can therefore be written in terms of the IFT as

∂ΠEx

∂p
= Ẽ(Ẽ⊤P̄ Ẽ)−1Ẽ⊤ diag

(
x−ΠEx

)
, (35)

This auxiliary result implies that the Jacobians of the mappings p 7→ ∇[a;b̃]ℓ and p 7→ ∇cℓ defined in Eq. (33a) and Eq. (33b)
are

∂∇[a;b̃]ℓ

∂p
=Ẽ† ∂

∂p
ΠE∇pℓ = (Ẽ⊤P̄ Ẽ)−1Ẽ⊤ diag

(
(I −ΠE)∇pℓ

)
+ Ẽ†ΠE∇2

pℓ, and (36a)

∂∇cℓ

∂p
=− λ−1

(
diag

(
(I −ΠE)∇pℓ

)
−Π⊤

E diag
(
(I −ΠE)∇pℓ

)
+ P̄ (I −ΠE)∇2

pℓ

)
=− λ−1

((
I −Π⊤

E

)
diag

(
(I −ΠE)∇pℓ

)
+ P̄ (I −ΠE)∇2

pℓ

)
.

(36b)



In order to bound the errors of these two gradients, we first derive an upper bound for the norm of the operator ΠE . An
important insight is that we can precondition ΠE via P̄

1
2

P̄
1
2ΠEP̄− 1

2x = argmin
y∈span(P̄

1
2 Ẽ)

∥x− y∥22, (37)

which results in an orthogonal projection P̄
1
2ΠEP̄− 1

2 . Since such projections have a spectral radius of at most 1, we can
bound the norm of ΠE as ∥∥ΠE

∥∥
2
≤
∥∥P̄− 1

2

∥∥
2

∥∥P̄ 1
2ΠEP̄− 1

2

∥∥
2

∥∥P̄ 1
2

∥∥
2
≤
∥∥P̄− 1

2

∥∥
2

∥∥P̄ 1
2

∥∥
2
, (38)

and equivalently show for the complementary projector I −ΠE that∥∥I −ΠE

∥∥
2
≤
∥∥P̄− 1

2

∥∥
2

∥∥P̄ 1
2 (I −ΠE)P̄− 1

2

∥∥
2

∥∥P̄ 1
2

∥∥
2
≤
∥∥P̄− 1

2

∥∥
2

∥∥P̄ 1
2

∥∥
2
. (39)

The Jacobians of the backward pass can then be bounded as∥∥∥∥∂∇[a;b̃]ℓ

∂p

∥∥∥∥
F

≤
∥∥(Ẽ⊤P̄ Ẽ)−1Ẽ⊤∥∥

2

∥∥(I −ΠE)∇pℓ
∥∥
2
+
∥∥Ẽ†ΠE∇2

pℓ
∥∥
F

=
∥∥Ẽ†ΠEP̄−1

∥∥
2

∥∥(I −ΠE)∇pℓ
∥∥
2
+
∥∥Ẽ†ΠE∇2

pℓ
∥∥
F

≤
∥∥Ẽ†∥∥

2

∥∥P̄− 1
2

∥∥2
2

∥∥I −ΠE

∥∥
2

∥∥∇pℓ
∥∥
2
+
∥∥Ẽ†∥∥

2

∥∥ΠE

∥∥
2

∥∥∇2
pℓ
∥∥
F

≤
∥∥Ẽ†∥∥

2

∥∥P̄− 1
2

∥∥
2

∥∥P̄ 1
2

∥∥
2

(∥∥P̄− 1
2

∥∥2
2
∥∇pℓ

∥∥
2
+
∥∥∇2

pℓ
∥∥
F

)
≤κ
√

σ+

σ−

(
1

σ−
C1 + C2

)
, and

(40a)

∥∥∥∥∂∇cℓ

∂p

∥∥∥∥
F

≤λ−1
∥∥I −Π⊤

E

∥∥
2

∥∥I −ΠE

∥∥
2

∥∥∇pℓ
∥∥
2
+ λ−1

∥∥P̄ (I −ΠE)
∥∥
2

∥∥∇2
pℓ
∥∥
F

≤λ−1
∥∥P̄− 1

2

∥∥2
2

∥∥P̄ 1
2

∥∥2
2

∥∥∇pℓ
∥∥
2
+ λ−1

∥∥P̄ 1
2

∥∥2
2

∥∥∇2
pℓ
∥∥
F

≤λ−1σ+

(
1

σ−
C1 + C2

)
,

(40b)

where the constants σ−, σ+, C1, C2 > 0 are as defined in Theorem 5, and where we use the identity∥∥Adiag(b)
∥∥
F
≤
∥∥A∥∥

2

∥∥diag(b)∥∥
F
=
∥∥A∥∥

2

∥∥b∥∥
2
. (41)

As a direct consequence, we obtain the bounds from Eq. (13a) and Eq. (13b), since the bounded derivatives imply the
Lipschitz continuity of the differentiable map p 7→ ∇[c;a;b]ℓ.


